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1 Introduction 
 
The purpose of this report is to review available methods for predicting the transition of 
boundary layers.  The emphasis will be on methods for transition mechanisms which are 
relevant to the flight conditions and geometric configurations of high altitude, long 
endurance aircraft, although the methods themselves may be much more general than this 
specific case.  Each method will be evaluated according to certain criteria which are 
appropriate to the development of a computationally efficient, accurate and robust 
transition prediction module which is fully integrated into a general purpose CFD code.  
For each particular transition mechanism, a method will be selected which best satisfies 
all of these criteria. 
 
In low-disturbance environments such as flight, boundary layer transition to turbulence 
generally occurs through the uninterrupted growth of linear instabilities. The initial 
conditions for these instabilities are introduced through the receptivity process, which 
depends on a variety of factors (Saric et al. 2002). There is no shortage of publications in 
the field of boundary layer stability and transition. Comprehensive reviews for both 2-D 
and 3-D flows are given by Arnal (1994), Mack (1984), Reed & Saric (1989), Reshotko 
(1994), Saric (1994), and Saric et al. (2003). Reed et al. (1996) give an up-to-date 
discussion of the effectiveness and limitations of linear theory in describing boundary 
layer instabilities. The reader is referred to these reports for overviews of much of the 
early work in stability and transition, and much of the work referenced below in this 
report. Schrauf et al. (1995), Crouch (1997), Crouch & Ng (2000), Crouch et al. (2001), 
and Herbert (1997) have presented analyses of transition with specific applications to 
flight. 
 
Four basic instability mechanisms can contribute to transition on a swept wing. Concave 
curvature can give rise to Görtler instabilities (Saric 1994) but this can be controlled by 
the appropriate profile design. Leading-edge radius and sweep give rise to attachment-
line contamination and instability (Pfenninger 1977, Poll 1985) but this can be controlled 
by keeping the leading-edge radius below a critical value. Streamwise instabilities related 
to the Tollmien-Schlichting mechanism typically occur in the mid-chord region and 
transition can be reasonably correlated (Reed et al. 1996). It is now well known that using 
a favorable pressure gradient and minimizing the extent of the pressure-recovery region 
both contribute to the control of these instabilities. The crossflow instability has been the 
primary Chimera holding back laminar flow control (LFC). Favorable pressure gradients 
used to stabilize streamwise instabilities destabilize crossflow. For years, it seemed as 
though the only solution to crossflow control was surface suction. The perceived 
complications with moving parts and additional maintenance were always discouraging 
factors toward laminarizing swept wings. This final hurdle may have been overcome with 
passive nonlinear biasing of stationary crossflow wave growth (Saric et al. 1998). 
 
There are additional factors which affect swept-wing transition.  Intersection of a laminar 
boundary layer with a turbulent boundary layer (at the wing root for instance) causes 
contamination of the laminar boundary layer and transition to turbulence in a wedge-
shaped region.  The effect of compressibility in the high subsonic/low supersonic range is 
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normally stabilizing, but at higher Mach numbers the nature of the instabilities changes.  
Transition to fully turbulent flow is rarely instantaneous, and so the length of the 
transition region must be determined so that accurate skin friction or heat transfer 
calculations can be made.  The roughness of the surface, which includes such things as 
bumps, steps, gaps, and surface waviness, obviously affects transition and so this must be 
investigated as well. 
 
Recommendations for transition prediction methods to be used in the Rapid Assessment 
Tool for Transition Prediction (RATTraP) program are summarized at the end of each 
section and a more complete description is given as a separate section at the end of the 
report.  A classic eN method will be used for both Tollmien-Schlichting and crossflow 
instabilities.  In both cases an envelope method as well as individual mode tracking will 
be used.  For attachment line instabilities, an empirical formula relating the momentum 
thickness Reynolds number to transition location for both disturbed and undisturbed flow 
is recommended.  Laminar-turbulent interaction will be predicted using an influence 
angle approach.  Corrections to the critical N factor will be used to account for 
compressibility.  Transition in the presence of roughness elements is predicted using 
empirical rules and N factor corrections. 
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2   General Methods  
 
2.1   Linear Stability Theory 
 
Mack (1984) should be considered required reading for those interested in all aspects of 
boundary layer stability theory, including all the basic details for deriving, analyzing, and 
solving the stability equations for 2-D flows, compressible flows, and 3-D flows.  His 
report updates the 3-D material in Mack (1969), which covers in large part his own 
pioneering contributions to the area.  Aspects on secondary instability theory are 
reviewed in Herbert (1988), Cowley & Wu (1994), and Healy (1995), and are not 
covered here. 
 
The basic idea behind linear stability theory is to superpose small disturbances onto the 
local, undisturbed boundary layer state (termed the "basic state") and determine whether 
these perturbations grow or decay.  If all decay, then the flow is termed "stable".  Control 
schemes creating a more stable basic state delay transition.  The analysis is performed 
locally by linearizing the complete unsteady Navier-Stokes equations about the basic 
state.  With (x,y,z) being the chordwise, normal-to-the-wall, and spanwise coordinates, 
the Navier-Stokes equations are made dimensionless by introducing the length scale 
 
  δr = (νx/U∞)1/2 
 
The quantity δr is called the local reference boundary layer thickness.  The quantities U∞ 
and  ν are the freestream velocity and kinematic viscosity, respectively.  The quantity R, 
the square root of the x-Reynolds number, is used to represent distance along the surface.  
The basic-state flow is assumed to be locally parallel; thus the basic-state quantities Q 
satisfy 
 
 U=U(y), V=0, W=W(y), T=T(y) 
 
where (U, V, W) are the chordwise, normal-to-the wall, and spanwise velocity 
components, and T is the temperature.  It is, of course, an incongruity to speak of a 
parallel boundary layer flow since no such thing can exist except under very special 
circumstances.  However, the parallel-flow assumption is an important first 
approximation to the linearized Navier-Stokes equations.  The stability equations (Orr-
Sommerfeld equations) are obtained by superposing small disturbances q' onto the basic 
state thus giving total flow quantities q of the form 
 
 q(x,y,z,t) = Q(y) + q'(x,y,z,t) 
 
The quantities q and Q separately satisfy the complete Navier-Stokes equations and 
therefore separately represent real flows, while it is important to remember that the 
disturbance quantities q' do not.  When the basic-state solution is dropped from the 
equations describing q, the equations in terms of the disturbance quantities q' result.  
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These equations are further simplified by making the approximation that products of 
disturbance quantities are neglected, i.e. the disturbance equations are linearized. 
 
The disturbance equations are linear and the coefficients are functions of y only.  This 
suggests a solution for q' in terms of separation of variables using normal modes (i.e. 
exponential solutions in terms of the independent variables (x,z,t) to reduce the 
disturbance equations to ordinary differential equations.  In a real boundary layer flow, 
the basic-state quantities vary slowly with the chordwise position.  In practice therefore, 
the normal-mode approach is generalized as: 
  
 q' = qo(y) eiΘ + c.c. 
 
where c.c. stands for complex conjugate and Θ(x,z,t) is the phase function 
 
 ∂Θ/∂x =  α, ∂Θ/∂z = β, ∂Θ/∂t = -ω 
 
Here, α is the chordwise wavenumber, β is the spanwise wavenumber, and ω is the 
frequency.  The amplitude function qo(y) is complex and q' is real because the Navier-
Stokes equations are real.  The dimensionless frequency 
 
 F = ω/R = 2πνf/U∞

2 
 
is used, where f is the frequency in Hertz and is conserved for single-frequency waves. 
The system constitutes an eigenvalue problem for the eigenvector qo(y).  This step 
represents a formal variable transformation and produces the correct zeroth-order 
approximation (quasi-parallel) that can be rigorously justified using a nonparallel analysis 
(see, for example, Gaster 1974, Saric & Nayfeh 1977). 
 
For a well-posed eigenvalue problem such as plane Poiseuille flow, there are an infinite 
set of discrete eigenvalues and a corresponding infinite discrete set of eigenfunctions.  
For boundary layers, there is a finite discrete set of eigenvalues and a continuous 
spectrum.  The eigenfunctions are called modes and form a basis for an arbitrary 
disturbance profile.  For incompressible streamwise instabilities, the least stable mode is 
called the first mode and there is no more than one unstable mode so that not much 
attention is paid to higher modes.  For some flows (e.g. compressible and centrifugal 
instabilities), more than one mode can be unstable. 
 
Disturbances can be classified with respect to spatial amplification, temporal 
amplification, and spatial and temporal amplification.  In spatial theory, ω is assumed to 
be real, while α and β are assumed to be complex.  Their real parts, αr and βr, represent 
the physical wavenumbers of the disturbances, while their imaginary parts, αi and βi, 
represent the growth (or decay) rates in the x and z directions, respectively.  In temporal 
theory, α and β are assumed to be real, while ω is assumed to be complex.  For both 
temporal and spatial amplification, ω, α, and β are all assumed to be complex;  this 
concept is applicable to wavepacket disturbances (Gaster 1968, Gaster & Grant 1975). 
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For spatial stability, the dispersion relation 
 
 α= f(β, ω, R) 
 
yields the unknown pair (αr, αi) when βr, βi, ω, and R are specified.  Whereas βr can be 
considered a parameter, βi is really also an unknown and an additional condition must be 
specified.  For 2-D basic-state flows and 3-D conical basic-state flows (e.g., an infinite-
span swept wing, Mack 1988), spanwise-periodic disturbances grow in the chordwise 
direction and βi = 0.  This may not be true in the case of localized 3-D disturbances.  
Arnal (1994) reviews the issue of the determination of βi. 
 
For temporal stability, the dispersion relation 
 
 ω= f(β, α,R) 
 
yields the unique pair (ωr, ωi) when β, α, and R are specified.  Because ω appears linearly 
in the stability equations, much of the early work focused on this case.  However, spatial 
theory corresponds more closely to certain physical situations such as boundary layers. 
 
For the case of a 2-D wave, the approximate temporal growth rate is the product of the 
spatial growth rate and the real part of the group velocity, i.e. 
 
 ωi = (-αi) Real(cg),  cg = dω/dα 
 
for small |αi| (Gaster 1962). Arnal (1994) points out that numerical simulations indicate 
that this transformation can be applied with confidence for larger amplification rates in 2-
D flows.  Nayfeh & Padhye (1979) find a relation between 3-D temporal and spatial 
stabilities and between spatial stabilities using the complex group velocity. 
 
The minimum critical Reynolds number is that Reynolds number below which all 
disturbances are stable.  Squire's theorem states that in determining the minimum critical 
Reynolds number, 2-D disturbances are most important.  Squire's theorem holds only for 
incompressible, parallel flows with temporally growing disturbances near the minimum 
critical Reynolds number.  Moreover, although the critical Reynolds number may be 
important from a fundamental point of view, it has nothing to do with the real problem of 
transition to turbulence.  Use Squire's theorem only with extreme caution. 
 
2.1.1 eN Method  
 
The state-of-the-art transition prediction design tool involves linear stability theory 
coupled with an eN transition prediction scheme (Mack 1984, Poll 1984, Arnal 1984, 
1992, 1994) and is applied at all speeds (Bushnell et al. 1989).  The quantity N is 
obtained by integrating the linear growth rate from the first neutral-stability point to a 
location somewhere downstream on the body, but eN represents nothing more than an 
amplitude ratio.  The role of receptivity, not accounted for in linear stability theory, is key 
to the overall process as it defines the initial disturbance amplitude (that is, A0 at the first 
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neutral-stability point).  Transition to turbulence will never be successfully understood or 
predicted without answering how freestream acoustic signals and turbulence enter the 
boundary layer and ultimately generate unstable waves.  Clearly then, the study of 
receptivity promises significant advance in practical transition-prediction methods. 
 
The basic design tool is the correlation of N with transition Reynolds number for a 
variety of observations.  The correlation will produce a number for N (say 9) which is 
then used to predict transition Reynolds number for cases in which experimental data are 
not available.  This is the eN method of Smith & Gamberoni (1956) and Van Ingen 
(1956).  As a transition prediction tool, it is certainly the most popular technique used 
today.  It works within some error limits only if comparisons are made among 
experiments with identical disturbance environments.  Since no account can be made of 
the initial disturbance amplitude, this method will always be suspect to large errors and 
should be used with extreme care.  When bypasses occur, this method does not work at 
all.  However, there is no other practical method presently available for industrial 
applications. 
 
The basic transition control technique endeavors to change the physical parameters and 
flow conditions in order to keep N within reasonable limits.  As long as laminar flow is 
maintained and the disturbances remain linear, the eN method contains all of the 
necessary physics to accurately predict disturbance behavior. 
 
Difficulties in the computation of the N factor increase with the complexity of the basic 
mean flow.  There is practically no problem for 2-D, incompressible flows, because 
oblique waves do not need to be taken into account, and the only choice is between 
temporal and spatial theory.  When the Mach number increases, the oblique waves 
become the most unstable ones, so that the wave orientation constitutes a new degree of 
freedom.  The problem is considerably more complex in 3-D flows with the possible 
coexistence of streamwise and crossflow disturbances. 
 
Mack (1984), Poll (1984), and Arnal (1984, 1992, 1994) give examples of growth-rate 
and eN calculations showing the effects of pressure gradients, Mach number, wall 
temperature, and 3-D for a wide variety of flows.  However, before using this method, 
one should be cautioned by Morkovin & Reshotko (1990). 
 
2.1.2 Numerical Methods 
 
Since the Reynolds number is large, the disturbance equations are stiff and care must be 
taken in their solution.  A good review of finite-difference and spectral methods is given 
by Malik (1990).  Mack (1984) gives a good summary of shooting techniques.  An 
incompressible design code SALLY (Srokowski & Orszag 1977) and a compressible 
design code COSAL (Malik & Orszag 1981, Malik 1982, Malik et al. 1982) use input 
swept-wing profiles such as those generated by a Kaups & Cebeci (1977) boundary layer 
code.  The code of Chen & Cebeci (1990) is a direct spatial stability code.  COAST, an 
efficient compressible stability code including curvature effects has been developed at 
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Deutsche Airbus (Schrauf 1993) and CASTET has been developed at CERT/ONERA 
(Laburthe 1992). 
 
Dagenhart (1981) considered stationary crossflow vortices and, instead of solving the 
linear stability equations each time, he used a table lookup of growth rates based on the 
basic state profile characteristics.  He reported that, with his code MARIA, he could 
adequately reproduce the results of the more complicated stability codes while using less 
than 2% of the computer time.  A similar procedure is used at Deutsche Airbus in a 
transonic wing-design code (Schrauf et al. 1992).   
 
Before doing any stability calculation, it is required that the basic state be computed.  In 
all cases the numerical accuracy of the basic state must be very high, because the stability 
results will be very sensitive to small departures of the mean flow from its "exact" shape.  
The stability of the flow can depend on small variations of the boundary conditions for 
the basic state, such as freestream velocity or wall temperature.  Therefore, basic-state 
boundary conditions must also be very accurate.  See the discussion and examples of 
Arnal (1994) and Malik (1990). 
 
Recommendation 
Although a great deal of faith is placed in the use of the eN method for transition 
prediction in design, it must be used with caution.  Care must be used in selecting which 
correlations to use for any given flow, since stability and transition behavior can strongly 
depend on the details of the flow.  Without a clear understanding of the detailed physics 
and which instabilities are responsible for transition, incorrect results are obtained. 
 
Arnal (1994) indicates that the eN method works very well in 2-D boundary layers in 
predicting transition location within acceptable uncertainty for the low disturbance 
environments of flight. It is the method of choice for 2-D boundary layers.  
 
It is not so successful, however, for absolute transition location prediction in 3-D 
boundary layers.  Linear stability theory accurately predicts which wavelengths are most 
unstable and which are appropriate for control, and is therefore very useful for airfoil and 
wing design. However, Arnal (1994) and Schrauf (1994) review the different approaches 
to the application of the eN method. When applied to available flight and wind-tunnel 
experiments, there is large scatter in the values of the eN factor at the onset of transition 
among the different methods. There are three reasons for this behavior: 1) Transition 
location is more difficult to determine accurately in 3-D flow than in 2-D flow. 2) 
Crossflow disturbances are very sensitive to micron-sized roughness elements which 
have no effect on streamwise disturbances (Radeztsky et al. 1993). 3) Disturbance 
development can be dominated by nonlinearities during a large part of the transition 
process and the use of linear theory up to breakdown is inappropriate and can 
overestimate wave amplitude (Reibert et al. 1996, Haynes and Reed 2000). 
 
The strength of linear theories is in their use for design by comparing growth rates and N 
factors from one configuration to another or doing parametric studies.  A configuration 
with a smaller N factor (using the same form of the theory) is likely to remain laminar 
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longer.  If the theory at least qualitatively contains the appropriate relationships, it can be 
a practical and efficient tool in the evaluation of new airfoil shapes for wings, even in 3-
D, in a comparative sense.   
 
In summary, carefully used LST is the method of choice for RATTraP. 
 
 
2.2   Parabolized Stability Equations 
 
In recent years the PSE have become a popular approach to stability analysis owing to 
their inclusion of nonparallel and nonlinear effects with relatively small additional 
resource requirements as compared with DNS (Herbert 1997). For linear PSE (LPSE), a 
single monochromatic wave is considered as the disturbance, which is decomposed into a 
rapidly varying “wave function” and a slowly varying “shape function”. Using a 
multiple-scales approach 
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The “shape function” φ  and streamwise wavenumber α  depend on the slowly varying 
scale Rxx /=  while the “wave function” χ  depends on the rapidly varying scale x . The 
frequency is ω  and the spanwise wavenumber is β . This gives the following form for the 
streamwise derivatives of disturbance quantities 
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O second-derivative term is neglected. This yields the 

following system of equations 
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Here 0L  is the Orr-Sommerfeld operator, 1L  contains the nonparallel basic-state terms, 
and 2L  and 3L arise due to the nonparallel disturbance terms. 
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The resulting system of equations is parabolic, so to complete the formulation, upstream 
(initial) and boundary conditions must be specified. The disturbance quantities are zero at 
the wall and as ∞→y . If the analysis begins in a region where the initial disturbance 
amplitudes are small, linear stability theory can be used to obtain these initial conditions. 

 
There still remains the matter of the ambiguity in streamwise dependence; applying a 
normalization condition ensures that any rapid changes in the streamwise direction will 
be “absorbed” by the wave function so that the shape function will vary slowly in this 
direction. For example, Haynes and Reed (2000) suggest the integral normalization 
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Assuming the solution is known at streamwise location ix , Haynes & Reed (2000) 
suggest the following streamwise marching algorithm: 
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Use 1+iφ  to compute the error ρ  
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Repeat steps 2-4 until ρ  is less than some tolerance 
 

The nonlinear PSE (NPSE) are derived in a fashion similar to LPSE with the exception 
that each disturbance quantity is transformed spectrally in the spanwise and temporal 
directions 
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Here each mode ( )kn,  is the product of a “shape function” and a “wave function”. The 
resulting system of equations is 
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The operators ( )3,0=iiL  assume the same meaning as in the LPSE form except that they 

are applied to each particular mode ( ) ( )⎟⎠
⎞⎜

⎝
⎛

knknkn ,,0,0,, φβωα  where 0ω  and 0β  are the 

fundamental frequency and spanwise wavenumber, respectively. During the marching 
procedure, each mode must individually satisfy the normalization condition. 

 
The PSE formulation here utilizes a body-intrinsic coordinate system and the curvature is 
included in the associated metric coefficients. The marching procedure naturally aligns 
the disturbance wave propagation in the proper direction. The local radius of curvature of 
the wing appears in the equations through the following terms: 
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where cR  is the local dimensionless radius of curvature of the airfoil taken as positive or 
negative for convex or concave regions, respectively. For all the computations presented 
here, curvature is neglected in the basic-state analysis. This is because the basic-state 
curvature terms are the same order as the terms neglected according to the boundary layer 
approximation so it would be inconsistent to retain them. In the limit of infinite curvature 
(flat plate), ∞→cR , so 11 =k  and 02 =k  are used in the stability equations for cases 
where curvature is neglected and the above equations are used for cases where curvature 
is retained. 
 
The code LASTRAC (Chang 2003) has been developed at NASA Langley, validated 
with numerous convective cases, and is available with limited distribution. 

 
Recommendation  
NPSE is more calculation intensive than LST (too much for RATTraP).  The good news 
is that the CFD formulations validated to date demonstrate that if the environment and 
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operating conditions can be modeled and input correctly, the computations NPSE agree 
quantitatively with the experiments. What is especially significant and exciting is that the 
NPSE, which have significantly less resource overhead associated with them compared 
with DNS, have been shown to accurately model a variety of relevant flows, including 3-
D flows.  The recommendation is to validate RATTraP LST correlations with NPSE. 
 
 
 

2.3   Direct Numerical Simulation 
 
Direct numerical simulations (DNS) are playing an increasingly important role in the 
investigation of transition; this trend will continue as considerable progress is made in the 
development of new, extremely powerful computers and numerical algorithms.  In such 
simulations, the full Navier-Stokes equations are solved directly by employing numerical 
methods, such as finite-difference, finite-element, finite volume, or spectral methods.  
There are two approaches: 1) simulations in which the disturbances are computed as part 
of the simulation, and 2) simulations in which transition is estimated based on mean-flow 
quantities or the location is user specified.  Only the first approach is considered here. 
 
For simulations in which the disturbances are computed as part of the simulation, 
excellent reviews include that of Kleiser & Zang (1991) and two AGARD lectures on 
spatial simulations (Reed 1994) and temporal simulations (Kleiser 1994). Transition is a 
spatially evolving process and the spatial DNS approach is widely applicable since it 
avoids many of the restrictions that usually have to be imposed in other models and is the 
closest to mimicking experiments.  For example, no restrictions with respect to the form 
or amplitude of the disturbances have to be imposed, because no linearizations or special 
assumptions concerning the disturbances have to be made.  Furthermore, this approach 
allows the realistic treatment of space-amplifying and -evolving disturbances as observed 
in laboratory experiments.  The temporal simulation, by contrast, uses periodic boundary 
conditions in the streamwise direction (identical inflow and outflow conditions) and 
follows the time evolution of a disturbance as it convects through the flow; upstream 
influence is limited by this assumption.  Moreover, in temporal simulations, the basic 
state is assumed to be strictly parallel, that is, invariant with respect to the streamwise 
coordinate.  All of these restrictions noted are especially suspect when considering 
complex geometries, 3-D boundary layers, receptivity, and control. 
 
The basic idea of the spatial simulation is to disturb an established basic flow by forced, 
time-dependent perturbations.  Then the reaction of this flow, that is, the temporal and 
spatial development of the perturbations, is determined by the numerical solution of the 
complete Navier-Stokes equations. 
 
Problems associated with this method which preclude it from being used routinely for 
design include: 
 
(a) A large amount of computer resources (cpu and memory) is usually required for 

solution (e.g. Herbert (1991) quotes an estimate of cpu O(103) hours and double 
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precision words of memory O(108) on a CRAY-YMP for 3-D runs on a flat plate using 
standard methods and simulating breakdown with limited resolution).  Because of the 
long fetch from the onset of instability to breakdown and the large amplitude ratios 

associated with this process (O(e10) and larger), resolution and bit accuracy limit how far 
into breakdown that a spatial simulation can go.  Because of the large differences in 
amplitudes throughout the domain and the large growth rates known to exist near 
breakdown where smaller scales appear, truncation and round-off errors can easily 
contaminate the solution.  Consequently, spatial simulations are currently unable to 
proceed completely through transition and into turbulence. 
 
(b) There is a need to impose a nonintrusive downstream boundary condition since the 
periodic assumption (associated with temporal simulations) is no longer used.  Several 
ideas have been developed by various investigators.  However, there is typically a region 
of waste where the Navier-Stokes equations are not valid and the solution is discarded.  
In light of the discussion in (a), this adds to the resource problem. 
 
(c) The use of either the PSE (Herbert 1993) or DNS simulations, both of which account 
for nonlinear and nonparallel effects, is hampered by our current lack of knowledge of 
the connection between the freestream and the boundary layer response.  A physically 
appropriate upstream or inflow condition must be specified.  Efforts to bridge this gap are 
an area of active research. 
 
2.3.1 Numerical Methods 
 
The Navier-Stokes equations are highly nonlinear, time-dependent, and elliptic in space.  
To simulate the spatial evolution of a disturbance field, a numerical method must account 
for (a) time-accurate discretization, (b) phase-accurate discretization of the convective 
terms, (c) sufficient resolution in viscous regions (e.g. close to surfaces and in free shear 
layers), (d) outflow, nonreflective boundary conditions, and (e) efficiency, speed, and 
"low" memory. 
 
The most highly studied geometry has been the flat plate.  A finite rectangular box, 
usually placed downstream of the leading edge and extending from Xo to XN in the 

streamwise direction, from 0 to YN in the normal direction, and from 0 to ZN in the 

spanwise direction, is usually selected as the physical domain.  The reaction of this flow 
to disturbances input along the wall, at the inflow, and/or at the farfield edge of the box is 
then determined by numerical solution of the complete Navier-Stokes equations for 3-D, 
time-dependent compressible/incompressible flow.  In this formulation a downstream 
boundary condition must also be specified. 
 
Different formulations of the dependent variables are possible including (in 
incompressible, Cartesian form):  a) primitive variable with three velocity components 
u,v,w (in the streamwise x, normal y, and spanwise z directions, respectively) and 
pressure (four unknown physical quantities).  b) vorticity/stream function (for 2-D only).  
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c) vorticity/velocity with three vorticity transport equations.  The governing equations 
can be solved for total flow quantities (basic state plus disturbance) or disturbance 
quantities (basic state solved separately) and, if written in conservative form, quantities 
such as vorticity, energy, etc. are "conserved", even for finite step sizes in the discretized 
equations. 
 
Because of the need for high spatial resolution, higher than in conventional CFD 
applications, the use of high-order finite differences and spectral methods is particularly 
attractive.  This is particularly important numerically when trying to advance into regions 
of large growth rates, small scales, and breakdown.  High-order finite-difference and 
compact methods are attractive because of their enhanced accuracy, relative tolerance of 
inconsistent boundary conditions, usefulness in complex regions, and resulting matrix 
structure (banded matrix because they are local methods). These techniques are very 
popular in spatial simulation studies.  Spectral and pseudospectral methods are global 
methods requiring less terms in the approximate solution and attractive numerically 
because of their high accuracy, good resolution in regions of high gradients, and 
exponential convergence properties and have become popular in transition simulations in 
various forms as will be seen in subsequent paragraphs.  Another advantageous property 
of these methods is that the energy can be monitored in the coefficients of the higher 
terms in the series, thus signaling when resolution is inadequate and the simulation must 
be terminated.  Collocation methods are often used for their ease of application, while 
Galerkin methods can be used in the development of divergence-free basis functions and 
tau methods may be used when fast solvers are available.  However, the issues of 
incorporating inconsistent boundary conditions, applying spectral methods to complex 
geometries and compressible flows, and solving flows with discontinuities away from 
boundaries (Gibbs phenomenon) need to be further addressed.  In general, promising 
active areas of effort include improved iterative convergence and multigrid techniques 
and spectral domain decomposition and multidomain methods. 
 
One must determine a workable combination of governing equations, boundary 
conditions, and numerics for each given problem.  What works for one situation may not 
work for another.  The available computer, in particular the architecture, vector length, 
speed, and memory, also dictates what approach is taken.  Thus far, to this author's 
knowledge, all simulations have assumed periodicity in the spanwise direction and used 
Fourier series there.  (The use of Fourier series allows for the use of Fast Fourier 
Transforms (FFTs) for the efficient computation of derivatives.) 
 
Investigators are working the prohibitive computer resource issue by developing 
advanced, highly accurate algorithms and the time and memory savings reported by 
investigators have thus far been encouraging in allowing the spatial simulation to become 
a more viable tool for the determination of the basic physics.  More work to reduce 
resource requirements for general geometries must be vigorously pursued, however, if 
spatial simulations are ever to become routine in design. 
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2.3.2 Disturbance Input 
 

One advantage of spatial simulations is the freedom and control of what is input as a 
disturbance;  the computation can be made to mimic experiments and provide some 
guidance.  If disturbances are to be introduced directly into the boundary layer along the 
inflow, typically normal modes from the Orr-Sommerfeld equation and/or random 
disturbances have been successfully used.  As another example, Singer et al. (1989) used 
a combination of random noise and vortices as upstream conditions in the plane channel 
and showed that, depending on the amplitude of the vorticity, the route to turbulence can 
be altered and experimental results matched.  Alternatively, a periodic suction/blowing 
(Fasel et al. 1987, 1990) or heater strip (Kral & Fasel 1989, 1990) on the surface will 
introduce disturbances;  this is incorporated into the wall boundary conditions.  Spalart 
(1989, 1990, 1991, 1993) introduces any of random noise, stationary and traveling waves, 
packets, etc. by means of a body force added to the right-hand side of the momentum 
equation. 
 
Providing input upstream of Branch I allows the noise to be washed out of the true 
disturbance signal in a region of damping before subsequent amplification.  All of the 
above techniques produce linear waves with the appropriate frequency and wavelength, 
although the introduction of modes at the upstream boundary requires the smallest 
downstream distance for this adjustment.  However, some of the other techniques can be 
argued to more mimic the experimental setup. 
  
Alternatively, disturbances can be introduced along the boundaries in the freestream 
along and/or upstream of the body.  For receptivity studies, oscillatory sound and 
vorticity disturbances are prescribed. 
 
2.3.3 Downstream Boundary Conditions 

 
In disturbance propagation problems, it is necessary to impose nonreflecting outflow 
conditions.  The elliptic nature of the Navier-Stokes equations comes from two sources:  
the pressure term and the viscous terms.  Interaction of these two effects produces 
upstream influence; if local velocity perturbations interact with the condition imposed at 
the downstream boundary, a pressure pulse can be generated that is immediately felt 
everywhere in the flowfield including the inflow boundary. 
 
The boundary layer is a parabolic, convectively unstable system, where controlled 
disturbances applied upstream convect downstream and affect transition.  But once these 
disturbances pass by, the boundary layer reverts to its original state before the forcing.  
As long as sufficient resolution is used and the boundary layer thickness to streamwise 
distance is small enough to prevent the transmission of pressure signals over distances of 
the order of x, advantage can be taken of this property of small upstream influence in 
formulating the downstream condition. 
 
Several investigators have developed a buffer domain, or region appended to the 
downstream end of the computational domain.  In this region, the governing equations 
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are modified to support only downstream moving waves or include strong damping.  It 
appears that as long as some sort of reasonable treatment is done downstream ahead of 
the boundary, the problem of wave reflection back upstream seems to be under control.  
The major concern is to minimize the wasted region in the computation, in order to keep 
required resources to a minimum. 
 
Recommendation  
DNS is much more calculation intensive than NPSE (way too much for RATTraP).  The 
good news is that the CFD formulations validated to date demonstrate that if the 
environment and operating conditions can be modeled and input correctly, the DNS 
computations agree quantitatively with the experiments for complex flows. The 
recommendation is to validate NPSE and then simpler LST correlations with DNS. 
 
2.3.4 Validation and Verification 

 
Here we distinguish between verification and validation. Per the designations of Roache 
(1997), we consider verification to mean “confirming the accuracy and correctness of the 
code” (i.e. is the grid resolved, are there any programming errors in the codes, etc.). 
Validation requires verification of the code in addition to confirming the adequacy of the 
equations used to model the physical problem. Strictly speaking, a code can only be 
validated by comparison with quality experimental data. 

 
There are mainly three sources of error in the abstraction of continuous PDE's to a set of 
discrete algebraic equations; (1) discretization errors, (2) programming errors (bugs), and 
(3) computer round-off errors. The objective of code verification is then to completely 
eliminate programming errors and confirm that the accuracy of the discretization used in 
solving the continuous problem lies within some acceptable tolerance. Aside from 
specifying single or double precision, the code developer has little control over the 
computer round-off errors, but this is usually several orders of magnitude smaller than the 
discretization error and far less than the desired accuracy of the solution. 

 
In this section we address programming and discretization errors. Many methods are 
discussed in the literature for code verification using grid refinement, comparison with 
simplified analytical cases, etc. For recent discussions see Roache (1997) and Oberkampf 
et al.(1995). Specific suggestions for testing a CFD code for the study of transition 
include (a) grid-refinement studies, (b) solving test problems for which the solution is 
known, (c) changing the “far-field” boundary locations systematically and re-solving, (d) 
comparing linear growth rates, neutral points, and eigenfunctions with linear stability 
theory, (e) running the unsteady code with time-independent boundary conditions to 
ensure that the calculations remain steady, and (f) running geometrically unsymmetric 
codes with symmetric conditions. 

 
In addition to the usual code verification techniques, there is a general method to verify 
the discretizations and locate programming errors by comparison with “manufactured” 
analytical solutions (Steinberg & Roache 1985). This method is general in that it can be 
applied to any system of equations. Although it is an extremely powerful tool, this 
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method has received relatively little attention in the literature. For clarity the technique is 
demonstrated on the Poisson equation. 
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To solve this problem, discretize the operator L using some appropriate approximation 
(finite differences, spectral, etc.). In general, the exact solution is not available. 
Therefore, for verification purposes, force the solution to be some combination of 
analytical functions with nontrivial derivatives. For example, consider the system 

( )xeLvg y 2sin5 3=≡ , which has an analytical solution ( )xev y 2sin3= . The exact solution can 
then be compared with the computed solution. Of course, manufactured solutions should 
be chosen with topological qualities similar to those anticipated for the solution to the 
“real” problem (e.g. gradients close to the wall). Proper choice for the manufactured 
solutions also allows the discretization of the boundary conditions to be verified. For 
large systems of equations a symbol manipulator is recommended for computing g. If a 
bug occurs, zeroing the coefficients of some terms can help to isolate the bug. 
 
Validation is defined as encompassing verification of the code as well as confirming that 
the equations used to model the physical situation are appropriate. The basis of validation 
is assumed to be a successful comparison with the few careful, archival experiments 
available in the literature. To date the PSE have been applied to a variety of 2- and 3-D 
flow situations and are generally regarded as appropriate for convectively unstable flows. 
The reader is encouraged to consult the reviews of Herbert (1997) and Reed et al. (1998) 
for many more examples, as well as the contrasts with DNS and LST.  For leading-edge 
receptivity problems, DNS has been demonstrated to have been successfully validated. 
 
 



FZM-9113 
June 15, 2005 

 

 17

3  Tollmien-Schlichting Instabilities  
 

3.1   Empirical correlations 
 
When there is some knowledge of transition location, mean laminar and turbulent heat 
transfer can usually be computed to better than 25% accuracy. However laminar-
turbulent transition in the boundary layer is usually estimated from crude algebraic 
correlations. The scatter in these correlations can be a factor of 2 or more. For example, 
because transition causes heat transfer to rise by a factor of about 5 in high-speed flows, 
this uncertainty in transition location dominates overall uncertainty in heat-transfer 
predictions. Clearly, knowledge of the transition process is crucial for accurate vehicle 
heating and drag predictions over the whole flight regime (Reed et al. 1997). 
 
Correlations usually try to predict the final onset of fully turbulent flow at Rex or Reθ as a 
function of pressure gradient, freestream turbulence, wall roughness, Mach number, wall 
suction and blowing, and wall heating and cooling.  Most of the approximations deal with 
only one or two of these parameters.  “Viscous Fluid Flow” 2nd edition by Frank M. 
White pp. 375-392 describes many of these efforts from an engineering standpoint. 
 
Recommendation 
Because these correlations usually do not contain physics, they must be used with great 
caution and only in a comparative conceptual design situation.  Use them only within the 
assumptions of the model (flowfield characteristics and operating conditions).  However, 
because LST contains all the relevant physics, it is suggested that growth rates from 
families of Falkner-Skan profiles be parameterized with several of these empirical basic-
state quantities and placed in a look-up table. 
  
3.2   eN Methods 
 
Streamwise instabilities are characterized by streamwise traveling waves that appear in 2-
D boundary layers and in the mid-chord region of swept wings.   
 
Considering a wide class of instability mechanisms, the general impression is that 
viscosity can only stabilize a flow.  However, a flat-plate boundary layer velocity profile 
is known to exhibit instability and yet it has no inflection point. Prandtl (1921) first 
developed the fundamental ideas of a viscous instability mechanism.  The instability is 
called viscous because the boundary layer velocity profile is stable in the inviscid limit 
and thus, an increase in viscosity (a decrease in Reynolds number) causes the instability.  
A general energy analysis shows that the Reynolds stress is the production term for 
instabilities.  Viscosity establishes the no-slip boundary condition which in turn creates 
the Reynolds stress which may destabilize the flow.  The actual distribution of Reynolds 
stress throughout the boundary layer determines whether a particular disturbance is stable 
or unstable. 
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Comparisons between the data of the mean-flow and disturbance-flow rms measurements 
from a single-frequency experiment and the data from the Blasius solution and a solution 
from linear stability theory show outstanding agreement and demonstrate that the 2-D 
problem is well understood.  Since the Orr-Sommerfeld problem is an eigenvalue 
problem, amplitude is undetermined.  The disturbance shape measured in experiments is 
characteristic of the first-mode eigenfunction or Tollmien-Schlichting (T-S) wave.  The 
sharp zero and double maximum occur because of a 180 degree phase shift in the region 
of the critical layer (where the local mean-flow speed equals the disturbance phase 
speed).  This shape is very different from a turbulence distribution or 3-D T-S wave.  The 
higher-mode eigenfunctions are highly damped and disappear within a few boundary 
layer thicknesses downstream of the disturbance source. 
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Figure 0:  A comparison between linear stability theory (line) and experiment (symbols) 
for flow over a 2-D flat plate with suction.  a) Both the basic state and the rms-amplitude 

distribution of the streamwise disturbance velocity are shown.  The agreement is 
excellent.  (From Reed & Nayfeh 1986, Reynolds & Saric 1986, Saric & Reed 1986). 

 
At constant frequency, the disturbance amplitude initially decays as one marches in the 
downstream direction until the Reynolds number RI at which the flow first becomes 
unstable is reached.  This point is called the Branch I neutral stability point.  The 
amplitude grows exponentially in the downstream direction until the Branch II neutral 
stability point RII is reached.  The locus of RI and RII points as a function of frequency 
gives the neutral stability curve. 
 
As mentioned previously, the eN method was first developed by Smith & Gamberoni 
(1956) and Van Ingen (1956) who correlated N factors between 7 and 9 with low-speed 
wind-tunnel experiments.  In these situations, the freestream turbulence level Tu 
influences transition.  Mack (1977) proposed relating N factor to Tu by the following 
relationship: 
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 N = - 8.43 - 2.4 ln (Tu) 
 
This can be applied with some confidence for 10-3 < Tu < 10-2 for both flat-plate and 
decelerated flows, as well as transonic Mach numbers (see Arnal 1994).  It cannot be 
used for Tu < 10-3, because noise becomes the dominant parameter and the excitation is 
frequency-dependent.  Crouch (2004) points out that data used for this correlation from 
Schubauer & Skramstad (1947) show a fixed transition Reynolds number for Tu < 0.07% 
which is related to wind tunnel acoustics, and that data from a quieter facility would 
likely follow the N factor relationship to lower values of Tu. The relationship cannot be 
used for Tu >10-2, because T-S waves are not clearly discernable, and the transition 
process is dominated by low-frequency, 3-D disturbances which are stable according to 
linear theory (Klebanoff modes).  Wang & Gaster (2004) and Crouch et al. (2004) 
determine N factor corrections for roughness (discussed in a later section).  Arnal 
discusses the conclusion that the eN method with N » 10 can be applied to predict 
transition in 2-D subsonic and transonic flows if the background turbulence level is low 
enough (quiet tunnels, free flight conditions) and if the wall is smooth.  Since the distance 
between the end of the linear region of disturbance development and the breakdown to 
turbulence is very short, the use of linear theory up to the onset of transition can be 
justified. According to Arnal, for "typical flat-plate conditions, the streamwise extent of 
linear amplification covers about 75 to 85% of the distance between the leading edge and 
the beginning of transition.  The relative extent of the nonlinear region is even smaller for 
decelerated flows.  This explains why prediction methods based on linear theory can give 
satisfactory results." 
 
 
 
3.2.1 Nonparallel Effects 
  
Mack (1984) and Saric (1990, 1994) are good references for nonparallel effects.  Gaster 
(1974) using asymptotic theory; Herbert & Bertolotti (1987) and Bertolotti et al. (1992) 
using PSE; and Fasel & Konzelmann (1990) using spatial DNS, all show that the parallel 
neutral curve is essentially the same as the nonparallel neutral curve.  Considering the 
experiments of Schubauer & Skramstad (1947) and Ross et al. (1970), for R > 600, the 
neutral points from linear stability theory and experiment agree very well for Blasius 
flow.  For R < 600, the agreement is not as good;  differences between theory and 
experiment in the linear range are not fully due to nonparallel effects, but rather to some 
other mechanism at work (Saric 1990, 1994).  Klingmann et al. (1993) confirmed Saric's 
ideas by generating experimental data that fall on the theoretical parallel neutral stability 
curve all the way forward to the minimum critical Reynolds number (R » 230). 
 
According to PSE computations for 2-D mean flows, nonparallel effects are negligible 
for 2-D waves even for strong positive pressure gradients.  These effects do become 
important for oblique waves, however (Arnal 1994). 
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3.2.2 Envelope methods/Mode tracking methods 
  
The envelope method computes one N factor associated with the maximum growth rate 
locally (finds the most unstable wave locally) as one marches downstream, whereas mode 
tracking calculates the N factors for all waves and tells the user the most unstable wave.  
The envelope method produces a slightly higher N factor and thus is conservative in 
transition location prediction (farther upstream).  Because the region of linear growth is 
usually long compared with the region over which the growth rates take off in flight 
situations, the differences in location prediction are within the uncertainty of the LST 
itself. 
 
Recommendation 
Use parallel, envelope LST method.  Use DNS or PSE to validate and correlate N factors 
and develop appropriate characterizing parameters for growth-rate table lookup based on 
Falkner-Skan basic states.  Note that disturbance phase speed is approximately 40% U 
and unstable wavelengths are on the order of 6-10 boundary layer thicknesses long. 
 
3.3  Other methods 
 
DNS and PSE are overkill for RATTraP.  Their role is to correlate N factors and in the 
development of basic-sate parameters to characterize LST results for time-efficient table 
lookup. 
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4 Crossflow Instabilities 
 
Transition to turbulence in crossflow-dominated, swept-wing boundary layers has 
received considerable attention over the past decade or so. The reason is the obvious 
engineering benefit that would result from enabling laminar flow over most of the wing. 
The difficulty faced in confronting this problem has been the strongly nonlinear nature of 
the crossflow instability. Linear methods have been unable to completely predict absolute 
transition location and therefore tremendous effort has been given to understanding the 
nonlinear aspects of the phenomenon. The basic review of swept wing stability was given 
by Reed and Saric (1989) while recent reviews of crossflow efforts have been given by 
Arnal (1997), Bippes (1997, 1999), Crouch (1997), Haynes and Reed (2000), Herbert 
(1997a, 1997), Kachanov (1996), Reibert and Saric (1997), Reshotko (1997), and Saric et 
al. (1998, 2003). 
 
The papers of Reed and Saric (1989), Kohama et al. (1991), Kachanov (1996), Arnal 
(1997), Bippes (1997), and Saric et al. (2003) provide an extensive list of references for 
the recent experiments, including the DLR experiments in Germany on a swept flat plate, 
a Russian swept-flat-plate experiment, the CERT/ONERA experiments on swept wings, 
the Institute of Fluid Science work in Sendai on cones and spheres, and the Arizona State 
University (ASU) swept-wing experiments. These papers established the existence of 
both traveling and stationary crossflow vortices, saturation of the stationary crossflow 
vortex, the nonlinear secondary instability leading to transition, and the sensitivity to 
freestream disturbances and surface roughness. Here are some great challenges to the 
computationalist. 
 
One of the key missing ingredients in all 3-D boundary layer experiments is the 
understanding of receptivity. Receptivity has many different paths through which to 
introduce a disturbance into the boundary layer and this “road map” is more complicated 
because of the amplified stationary vortices. In fact, many aspects of transition in 3-D 
boundary layers are orthogonal to 2-D boundary layers so such a “road map” is either not 
unique or too complicated. Aside from the usual mechanisms, such as the interaction of 
freestream turbulence and acoustical disturbances with model vibrations, leading-edge 
curvature, attachment-line contamination, discontinuities in surface curvature, etc., the 
presence of roughness that may enhance a stationary streamwise vortex is very important. 
In contrast to 2-D boundary layers where small 2-D roughness is important and 3-D 
roughness is less important unless it is large, the 3-D boundary layer appears to be very 
sensitive to micron-sized 3-D roughness. In this case, 2-D roughness is only important at 
its edges. 
 
The net result of the previous efforts is a very complete understanding of the primary 
crossflow instability, including details of the nonlinear saturation of the dominant 
stationary mode and the growth of harmonics. An important consequence is that a means 
of transition suppression has been developed by Saric et al. (1998) that exploits the nature 
of the nonlinearities. 
 
 



FZM-9113 
June 15, 2005 

 

 22

4.1  Empirical correlations 
 
Owen & Randall (1952) evaluated crossflow stability and transition criteria based on 
Gray (1952) AW52 flight results and on Anscombe & Illingsworth (1952) wind-tunnel 
data.  They introduced a crossflow Reynolds number Rcf = Wmaxδ10/ν (based on the 
maximum crossflow velocity and the boundary layer height where the crossflow velocity 
is 10% of the maximum) as the governing parameter and reported a minimum critical 
crossflow Reynolds number of 96 in the front part of the swept wing.  Transition was 
located at 150.  Other more recent experiments demonstrate that this is not the whole 
story.  Michel et al. (1985) correlate transition using three parameters: Reynolds number 
based on the displacement thickness in the most unstable direction of the flow, the 
streamwise shape parameter, and the external turbulence level.  Poll (1984) also finds he 
needs an additional parameter in addition to crossflow Reynolds number and shape 
factor. 
 
With the current interest in high-speed flight, there is also a keen desire to determine 
correlating parameters, based purely on basic-state profiles, that can be easily 
incorporated into existing basic-state codes and will predict transition location (or trends) 
for crossflow-dominated problems.  To evaluate parameters quantifying stability 
characteristics, Reed & Haynes (1994) examined the linear stability of the supersonic 
flow over a rotating cone at zero incidence.  When compressibility and cooling effects are 
included, a relationship is found between a new crossflow Reynolds number and the 
maximum crossflow velocity at transition.  This result has been verified with the yawed-
cone data of King (1991), Stetson (1982), and Holden et al. (1994).  The new crossflow 
Reynolds number is calculated solely from the basic-state profiles and, as such, it can aid 
in conceptual (only) transition prediction and design for 3-D boundary layers. 
 
Recommendation 
These parameters contain crossflow profile features and can be used to parameterize the 
basic-state profiles generated from Falkner-Skan-Cooke formulation and correlate the 
LST growth rates for table lookup for RATTraP. 
 
4.2  eN Methods 
 
Linear stability theory is not so successful in absolute transition location determination 
for 3-D boundary layers. Arnal (1994) and Schrauf (1994) review the different 
approaches to the application of the eN method. When applied to available flight and 
wind-tunnel experiments, there is large scatter in the values of the N factor at the onset of 
transition among the different methods. There are three reasons for this behavior: 1) 
Transition location is more difficult to determine accurately in 3-D flow than in 2-D flow. 
2) Crossflow disturbances are very sensitive to micron-sized roughness elements which 
have no effect on streamwise disturbances (Radeztsky et al., 1993). 3) Disturbance 
development can be dominated by nonlinearities during a large part of the transition 
process and the use of linear theory up to breakdown is inappropriate and can 
overestimate wave amplitude (Reibert et al. 1996, Haynes and Reed 2000). 
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Whereas linear stability theory predicts that the traveling crossflow waves are more 
amplified than the stationary crossflow waves, many experiments observe stationary 
waves. The question of whether one observes stationary or traveling crossflow waves is 
cast inside the receptivity problem. Deyhle and Bippes (1996) and Bippes (1997) 
describe a series of comparative experiments in a low-turbulence and a high-turbulence 
tunnel. They found that for the particular model used in those experiments, turbulence 
intensities above Tu = 0.0015 produced transition behavior dominated by traveling 
waves, but that for lower turbulence levels, stationary waves dominate. Surprisingly, for 
increased turbulence levels where traveling waves dominate but the turbulence intensity 
is not too high, 0.0015 < Tu < 0.0020, transition was actually delayed relative to low-
turbulence cases at the same Reynolds number. The explanation is that the traveling 
waves excited by the increased freestream turbulence were sufficiently strong to prevent 
stationary waves from causing transition but were not themselves strong enough to cause 
transition as quickly as the stationary waves they replaced. This behavior indicates that 
transition results from many wind tunnels may have no bearing on flight results because 
quite low levels of turbulence are sufficient to generate traveling-wave-dominated 
behavior, not what is observed in flight. Since the flight environment is more benign than 
the wind tunnel, one expects the low-turbulence results to be more important.  The 
implication is that LST and the other CFD techniques be performed assuming stationary 
crossflow. 

 
One of the important results to come out of the DLR group is the set of data that show 
early saturation of the disturbance amplitude and the failure of linear theory to predict the 
growth of the instability. They also report distorted mean profiles similar to those of 
Kohama et al. (1991) and Malik et al. (1994) due to the presence of the stationary 
corotating vortices. A similarity between the DLR and ASU experiments is the high N 
factors and high amplitude of the mean-flow distortion (10%-20%). It is not surprising 
that linear theory fails. 

 
For low-amplitude crossflow waves, Radeztsky et al. (1994) find that linear stability 
theory correctly predicts the expected wavelengths and mode shapes for stationary 
crossflow. For this case, Haynes and Reed (2000) find that linear theory including 
curvature correctly predicts the growth rates. This is not the case for higher-amplitude 
crossflow and the results of Reibert et al. (1996) and Haynes & Reed (2000) demonstrate 
conclusively that a nonlinear calculation is required to obtain complete agreement.  

 
4.2.1 Envelope methods/Mode tracking methods 
 
Difficulties in the computation of the N factor increase with the complexity of the basic 
mean flow.  There is practically no problem for 2-D, incompressible flows, because 
oblique waves do not need to be taken into account, and the only choice is between 
temporal and spatial theory.  When the Mach number increases, the oblique waves 
become the most unstable ones, so that the wave orientation constitutes a new degree of 
freedom.  The problem is considerably more complex in 3-D flows with the possible 
coexistence of streamwise and crossflow disturbances. 
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There is no unique way to integrate growth rates to achieve N factors because for 3-D 
disturbances there are more unknowns than equations and extra conditions must be 
applied for closure.  Many groups have published many papers discussing this in the US, 
Europe, Japan, and Russia.  For parallel, 3-D, incompressible stability calculations, a 
computer code, SALLY, was developed by Srokowski & Orszag (1977) that used the eN 
method for correlating the transition location.  They calculate the maximum temporal 
amplification rate for a given dimensional frequency from the parallel incompressible 
stability equations (the so-called envelope method).  Then they use the real part of the 
group velocity to convert the temporal amplification rate into a spatial one (Gaster 1962) 
and integrate along the path defined by the real part of the group velocity.    Mack (1978, 
1980), in his spatial calculations for Falkner-Skan-Cooke yawed wedges, also defines the 
direction of growth as that of the real part of the group velocity.  Cebeci & Stewartson 
(1980) use the condition that d�/d� be real, a condition also found by Nayfeh (1980).  
Nayfeh & Padhye (1979) find a relation between 3-D temporal and spatial stabilities and 
between spatial stabilities using the complex group velocity.  
 
Recommendation 
Setting the frequency to zero to examine stationary waves only is consistent with 
experiments and the inescapable presence of roughness.  1) For a conical flow in which 
the pressure gradient and all derivatives are zero along the generators (conically parallel 
to the leading edge), setting the growth rate along the generator to be zero is physical.  
Then fixing the dimensional wavelength in the direction along the generator is physical.  
That leaves as many unknowns as LST equations.  2) For non-conical situations, we 
recommend performing the “conical” approximation in strips and marching the 
disturbances across the wing. 
 
Also, there has been much debate as to whether to include curvature effects.  There has 
been much debate about the effects of curvature. For the swept wing , the inclusion of 
curvature has a very small effect on the metric coefficients. The maximum values of 1k  
and 2k  occur at about 5% chord where they are the order of 1.01 and 10-3, respectively. 
They both drop off sharply with increasing chordwise distance. These values may compel 
the researcher to neglect curvature, but the work of Haynes and Reed (2000) 
demonstrates conclusively that small changes in the metric coefficients can have a 
significant effect on the development of crossflow vortices.  Convex curvature is 
stabilizing.  However, LST neglects nonparallel effects which are destabilizing.  These 
two effects more or less cancel each other in how they affect growth rates.  We conclude 
the following:  LST must be performed without curvature. 
 
For stationary crossflow, Crouch (2004) provides N factor approximations taking into 
account surface roughness. See Section 10.1. 
 
What to do if streamwise and crossflow disturbances coexist? First off, in designing a 
wing under flight Reynolds numbers, it is injudicious to work at the margins of these 
instabilities and with more than one possibly present.  Having said that, for lack of 
anything better, for engineering design, several groups (Boeing, Arnal in France) assume 
a relationship between the N factors for steady crossflow transition and T-S transition, for 
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example: NTS = 12 – 1.2 (NCF).  The present design philosophy for a swept wing should 
be to eliminate streamwise instabilities and concentrate on mean flow modifications to 
reduce the growth of crossflow waves. 
 
Note that crossflow wavelength is approximately 4 times the boundary layer thickness. 
 

4.3  Other methods 
 
The NPSE approach has recently been validated for 3-D flows subjected to crossflow 
disturbances by Haynes & Reed (2000). Here a detailed comparison of NPSE results with 
the experimental measurements of Reibert et al. (1996) show remarkably good 
agreement. The configuration is an NLF(2)-0415 45°-swept airfoil at -4° angle-of-attack, 
so chosen to provide an extensive region of crossflow (at least back to mid-chord) for 
detailed study of the physics. A spanwise array of roughness elements is used near the 
airfoil leading edge (at 2% chord) to introduce spanwise-periodic crossflow disturbances 
into the boundary layer. According to LST, a spanwise spacing of 12 mm corresponds to 
the most highly amplified stationary crossflow disturbance. The walls of the ASU 
Unsteady Wind Tunnel were shaped to achieve a spanwise-independent basic-state flow 
– an “infinite wing” in CFD terms. The freestream turbulence levels are well documented 
to be O(10-4) so that, with any surface roughness, stationary crossflow is expected. 
Reibert et al. (1996) provide all the details for the experimental facility and set-up. 
 
Haynes and Reed (2000) used a panel-method code to compute the inviscid flow, from 
which the edge boundary conditions were generated for the boundary layer code. 
Agreement between the experimental and computational pC  distribution is good. 

As a baseline case to study the evolution of crossflow vortices, roughness elements with a 
spanwise spacing of 12 mm were placed on the experimental model. The initial 
conditions for the NPSE calculation (with curvature) were obtained by solving the local 
LST equations at 5% chord location for the fundamental (mode (0,1)) and adjusting its 
RMS amplitude such that the total disturbance amplitude matched that of the experiment 
at 10% chord. The NPSE was then marched from 5% chord to 45% chord. Transition 
occurred on the experimental model at 52% chord. 
 
The primary and higher modes all grow rapidly at first and saturate at about 30% chord. 
This is due to a strong nonlinear interaction among all the modes over a large chordwise 
distance. From about 35% chord on, there is still strong nonlinear interaction among the 
primary and second harmonic, but not the others. The development of crossflow occurs in 
two stages. The first stage is linear and is characterized by small vertical v  and spanwise 
w  disturbance velocities convecting low-momentum fluid away from the wall and high-
momentum fluid toward the wall. This exchange of momentum occurs in a region very 
close to the wall where there are large vertical gradients in the basic-state streamwise 
velocity. Because of this large gradient, the small displacements caused by the v  and w  
disturbance components quickly lead to large disturbances u  superposed on the basic 
state further downstream. This u  component soon becomes too large and nonlinear 
interactions must be included in any calculations. This is the second stage, evidenced by 
roll-over seen in the streamwise-velocity contours. Seeing a comparison of the 
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experimental and computational total streamwise velocity contours at 45% chord, the 
agreement between the NPSE and the experiments is excellent. Seeing the comparison of 
the experimental N factor curves with LPSE, NPSE (with curvature), and LST, it is clear 
that the linear theories fail to accurately describe the transitional flow for this situation. 
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Figure 1:  Streamwise-velocity contours for NLF(2)-0415 o45 - sweep, 

mmzmillioncR 12,4.2 == λ , 45% chord. Excellent agreement between NPSE with curvature 
and experiments. 
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Figure 2:  N factors for NLF(2)-0415 o45 - swept airfoil, mmzmillioncR 12,4.2 == λ . Shown 
is the excellent agreement between NPSE with curvature and the experiments. 

 
 
There has been much debate about the effects of curvature. For this configuration , the 
inclusion of curvature has a very small effect on the metric coefficients. The maximum 
values of 1k  and 2k  occur at 5% chord where they are the order of 1.01 and 10-3, 
respectively. They both drop off sharply with increasing chordwise distance. These 
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values may compel the researcher to neglect curvature, but the work of Haynes and Reed 
(2000) demonstrates conclusively that small changes in the metric coefficients can have a 
significant effect on the development of crossflow vortices. 
 
Radeztsky et al. (1994) studied the effects of angle-of-attack (AOA). Here, in a case of 
weak favorable pressure gradient, the experiments showed that the crossflow disturbance 
is decaying in disagreement with various linear theories (LST, LPSE/without curvature, 
and LST/with curvature) that predicted the disturbance to be growing. Radeztsky et al. 
(1994) concluded that the disagreement was due to nonlinearity. For this case, Haynes 
and Reed (2000) found that the LPSE/with curvature and NPSE/with curvature both 
agreed with the experiment, indicating that in fact the crossflow disturbance decays and 
there is a strong sensitivity to changes in curvature, nonparallel effects, and pressure 
gradient (AOA). The disturbance was linear for this case. 

 
Saric et al. (1998) observed that unstable waves occur only at integer multiples of the 
primary disturbance and no subharmonic disturbances are destabilized. They investigated 
the effects of distributed roughness whose primary disturbance wavenumber does not 
contain a harmonic at 12 mm (the most unstable wavelength according to linear theory). 
In the absence of artificial roughness, transition occurs at 71% chord. Adding roughness 
with a spanwise spacing equal to the wavelength of the linearly most unstable wave 
moves transition forward to 52% chord. However, subcritical forcing at 8 mm spanwise 
spacing actually delays transition beyond the pressure minimum and onto the trailing-
edge flap at 80% chord. The NPSE results confirmed this effect. 

 

4.4   Control with Distributed Roughness 
 
Two important observations concerning the distributed roughness results of Reibert et al. 
(1996) are: (1) unstable waves occur only at integer multiples of the primary disturbance 
wavenumber; (2) no subharmonic disturbances are destabilized. Spacing the roughness 
elements with wavenumber 2 /k π λ=  apart, excites harmonic disturbances with spanwise 
wavenumbers of 2k, 3k, L , nk (corresponding to / 2, / 3, , / nλ λ λL ) but does not produce 
any unstable waves with “intermediate” wavelengths or with wavelengths greater than λ . 
 
Following this lead, Saric et al. (1998) investigate the effects of distributed roughness 
whose primary disturbance wavenumber does not contain a harmonic at sλ  = 12 mm (the 
most unstable wavelength according to linear theory). By changing the fundamental 
disturbance wavelength (i.e., the roughness spacing) to 18 mm, the velocity contours 
clearly showed the presence of the 18 mm, 9 mm, and 6 mm wavelengths. However, the 
linearly most unstable disturbance ( sλ =12 mm) has been completely suppressed. 
Moreover (and consistent with all previous results), no subharmonic disturbances are 
observed. This shows that an appropriately designed roughness configuration can, in fact, 
inhibit the growth of the (naturally occurring) most-unstable disturbance. When the 
disturbance wavelength was forced at 8 mm, the growth of all disturbances of greater 
wavelength was suppressed. The most remarkable result obtained from the subcritical 
roughness spacing is the dramatic affect on transition location.  In the absence of artificial 



FZM-9113 
June 15, 2005 

 

 28

roughness, transition occurs at 71% chord. Adding roughness with a spanwise spacing 
equal to the wavelength of the linearly most unstable wave moves transition forward to 
47% chord. However, subcritical forcing at 8 mm spanwise spacing actually delays 
transition beyond the pressure minimum and well beyond 80% chord (the actual location 
was beyond view). This promising technique is currently being evaluated for supersonic 
flight (Saric & Reed 2002). 
 
Subsequent to the experiments, the NPSE results (Haynes & Reed 2000) confirmed this 
effect. In a DNS solution, Wassermann & Kloker (2002) have shown the same 
stabilization due to subcritical forcing. Using the same independent approach regarding 
the calculation of the basic state, they demonstrated the stabilization due to subcritical 
roughness and coined the name transition delay by “upstream flow deformation.” 

 
4.5   Secondary Instabilities 
Once stationary vortices reach saturation amplitude, this state can persist for a very 
significant streamwise distance. The velocity contours show low-momentum fluid above 
high-momentum fluid which produces a double inflection point in the wall-normal 
velocity profile. There is also an inflection point in the spanwise profile. These inflection 
points are high in the boundary layer and the saturated vortices become unstable to a 
high-frequency secondary instability that ultimately brings about transition to turbulence. 
Because of the importance of the secondary instabilities in determining the location of 
breakdown of the laminar flow, there have been a number of investigations, both 
experimental and computational, in this area. Bippes (1999) includes details on the 
German efforts, in particular the work by Lerche (1996) and Lerche & Bippes (1995) that 
emphasizes secondary instabilities in flows with higher turbulence levels and traveling 
crossflow waves. Recent efforts involving secondary instabilities in the Russian traveling 
wave experiments are covered by Boiko et al. (1995, 1999). 
 
The first crossflow experiment for which a high-frequency disturbance was observed 
prior to transition was by Poll (1985). Traveling crossflow waves were observed with a 
dominant frequency of 1.1 kHz for Rec = 0.9×106. Increasing the chord Reynolds number 
to 1.2×106 increased the traveling crossflow frequency to 1.5 kHz and also included an 
intermittent signal at 17.5 kHz superposed on the underlying traveling crossflow waves. 
Poll noted that increasing the Reynolds number beyond 1.2×106 resulted in turbulent flow 
at the measurement location, so the high-frequency signal appeared only in a narrow 
range just prior to transition. Poll attributed the existence of the high-frequency 
component to intermittent turbulence. 
 
A high-frequency secondary instability was specifically investigated as a source of 
breakdown by Kohama et al. (1991). This experiment combined hotwire measurements 
and flow visualizations and was intended to determine the location and behavior of the 
secondary instability mode relative to visualized breakdown patterns. It is clear from the 
Kohama et al. (1991) experiments that there is a growing high-frequency mode in the 
region upstream of transition that can be associated with an inviscid instability of the 
distorted mean flow. However, a concern can be raised because the measurements were 
made without a well-controlled primary disturbance state. Experiments subsequent to this 
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work used arrays of micron-sized roughness elements near the leading edge that 
established the spanwise uniformity both of the stationary vortex amplitudes and the 
transition location. Without the benefit of this technique, the data obtained by Kohama et 
al. (1991) likely spanned a wide range of stability behavior despite having been obtained 
at a single chord position. Improvements in experimental techniques mean that more 
recent secondary instability experiments have replaced the work by Kohama et al. (1991) 
as the best source for secondary instability data. 
 
Kohama et al. (1996) provide somewhat more detail than Kohama et al. (1991) by 
including velocity fluctuation maps that are filtered to give either primary instability or 
secondary instability fluctuation levels. Kohama et al. (1996) conclude that a “turbulent 
wedge starts from the middle height of the boundary layer” and that this behavior is 
different from the usual picture of a turbulent wedge that originates in the high-shear 
regions in naphthalene flow-visualization experiments. A subsequent swept plate 
experiment by Kawakami et al. (1999) was conducted to further refine these 
measurements. Kawakami et al.’s experiment featured a small speaker mounted flush 
with the surface that permitted tracking of particular secondary-instability frequencies. 
Without acoustic forcing, two separate high-frequency bands of disturbances were 
observed to be unstable. At a chord Reynolds number of 4.9 × 106, a band located 
between 600 Hz and 2.5 kHz destabilized just downstream of x/c = 0.35 and a second 
band located between 2.5 and 4.0 kHz destabilized just upstream of x/c = 0.50. Transition 
was observed around x/c = 0.70. With acoustic forcing applied, the secondary instability 
frequency with the largest growth between x/c = 0.40 and x/c = 0.475 was observed to be 
1.5 kHz. 
 
In an effort to provide a more concrete experimental database on the behavior of the 
secondary instability, White & Saric (2002) conduct a very detailed experiment that 
tracks the development of secondary instabilities on a swept wing throughout their 
development for various Reynolds numbers and roughness configurations. They found a 
number of unique secondary instability modes that can occur at different frequency bands 
and at different locations within the stationary vortex structure. In White & Saric’s 
experiment as many as six distinct modes are observed between 2 and 20 kHz. The 
lowest-frequency mode is nearly always the highest amplitude of all the secondary 
instabilities and is always associated with an extremum in the spanwise gradient, ∂U/∂z 
which Malik et al. (1996, 1999) refer to as a mode-I or z mode. Higher frequency modes 
include both harmonics of the lowest-frequency z mode that appear at the same location 
within the vortex and also distinct mode-II or y modes that form in the ∂U/∂y shear layer 
in the portion of the vortex farthest from the wall. The lowest frequency mode is typically 
detected upstream of any of the higher frequency modes. However, many higher 
frequency modes appear within a very short distance downstream. All of the secondary 
instability modes are amplified at a much greater rate than the primary stationary vortices 
(even prior to their saturation). The rapid growth leads very quickly to the breakdown of 
laminar flow, within about 5% chord of where the secondary instability is first detected. 
A consequence of this for transition prediction methodologies is that adequate 
engineering predictions of transition location could be obtained from simply identifying 
where the secondary instabilities are destabilized because they lead to turbulence in such 
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a short distance downstream of their destabilization location. An interesting feature of the 
breakdown of the stationary vortex structure is that it is highly localized. Spectra obtained 
by White & Saric at various points within the structure indicate that the first point to 
feature a broad, flat velocity fluctuation spectrum characteristic of turbulence is a point 
very close to the wall in the region of highest wall shear. Other points in the structure 
remain essentially laminar for some distance downstream of the initial breakdown 
location. This finding supports the notion of a turbulent wedge originating near the wall, 
not what was concluded by Kohama et al. (1996). 
 
A successful computational approach to the secondary instability was presented by Malik 
et al. (1994) who used a NPSE code to calculate the primary instability behavior of 
stationary disturbances of a swept Hiemenz flow. As described previously, the NPSE 
approach successfully captures the nonlinear effects including amplitude saturation. The 
distorted mean flow provides a basic state for a local, temporal secondary instability 
calculation. The most unstable frequency is approximately one order of magnitude 
greater than the most unstable primary traveling wave similar to Kohama et al. (1991) 
and the peak mode amplitude is “on top” of the stationary crossflow vortex structure. 
This location corresponds to what will be referred to below by Malik et al. (1996) as the 
mode-II secondary instability. 
 
In order to obtain a more direct comparison to experimental data, Malik et al. (1996) used 
parameters designed to match the conditions found for the swept-cylinder experiment of 
Poll (1985) and the swept-wing experiment of Kohama et al. (1991). The calculations of 
Malik et al. (1996) reveal that the energy production for a mode-I instability is dominated 
by the term <u2w2>∂U2/∂z2 and the mode-II instability is dominated by <u2v2>∂U2/∂y2 
where the subscript “2” refers to a primary-vortex-oriented coordinate system. This 
energy production behavior suggests that the mode-I instability is generated primarily by 
inflection points in the spanwise direction and the mode-II instability is generated by 
inflection points in the wall-normal direction. This situation is analogous to the secondary 
instabilities of Görtler vortices (Saric 1994). Malik et al. (1996) claim that the 
fluctuations observed by Kohama et al. (1991) are mode-II instabilities but the spectral 
data presented by Kohama et al. (1991) likely includes contributions of both the type-I 
and type-II modes. Although one or the other production mechanism may dominate for a 
particular mode, it is too simplistic to assume that only the spanwise or wall-normal 
inflection points are responsible for the appearance of a particular mode; with such a 
highly distorted 3-D boundary layer, all possible instabilities must be evaluated. 
 
Malik et al. (1996) also compute the secondary instability behavior observed by Poll 
(1985) and predict a 17.2-kHz mode compared to Poll's high-frequency signal occurred at 
17.5 kHz. Based on the shape of this disturbance, Malik et al. claim that this is a type-II 
mode. The same approach is applied by Malik et al. (1999) to the swept wing 
experiments of Reibert et al. (1996). Malik et al. (1999) again apply a local, temporal 
stability of the stationary crossflow vortices that are established by the primary instability 
and find that better transition correlation results can be obtained by following the growth 
of the secondary instability in an N factor calculation than simply basing a prediction on 
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the location at which the secondary instability destabilizes. A method based on the 
primary instability alone cannot adequately predict transition location. 
 
An alternative to the approach used by Malik et al. (1994, 1996, 1999) is presented by 
Koch et al. (2000) who find the nonlinear equilibrium solution of the primary flow. Koch 
et al. use the nonlinear equilibrium solution as a receptivity-independent basic state for a 
Floquet analysis of secondary instabilities of the saturated vortices. Yet another approach 
is by Janke & Balakumar (2000) who use a NPSE for the base flow and a Floquet 
analysis for the secondary instabilities. Both Koch et al. (2000) and Janke & Balakumar 
(2000) are in general agreement with the various computations of Malik and coworkers. 
 
A DNS approach to the problem of the stationary-vortex saturation and the ensuing 
secondary instability was pursued by Högberg & Henningson (1998). These authors 
impose an artificial random disturbance at a point where the stationary vortices are 
saturated. These disturbances enhance both the low- and high-frequency disturbances 
downstream, and each frequency band has a distinct spatial location, with the high-
frequency disturbance located in the upper part of the boundary layer and the low-
frequency disturbance located in the lower part. Spectral analysis of the resulting 
disturbance field shows that the most-amplified high frequency is somewhat more than an 
order of magnitude higher frequency than the most amplified traveling primary 
disturbance. Another high-frequency peak at approximately twice this frequency is also 
evident in the spectra. This peak likely corresponds to a type-II mode, although this 
feature is not described by the authors. 
 
Another very highly resolved DNS study of nonlinear interactions of primary crossflow 
modes, their secondary instabilities, and eventual breakdown to turbulence is by 
Wassermann & Kloker (2002). Wassermann & Kloker emphasize disturbance wave 
packets that may be more realistic than single-mode disturbances. One of the most 
important findings obtained from the wave-packet approach is that unevenly spaced 
primary vortices of differing strengths can interact in such a way to bring about an earlier 
onset of secondary instabilities and breakdown than would be found from a single-mode 
disturbance. Also, Wassermann & Kloker find that when the forcing that initiates the 
high-frequency secondary instability in their simulation is removed, the secondary-
instability disturbances are convected downstream, out of the computational domain. This 
indicates that the secondary instability is convective and that the explosiveness of the 
secondary instability’s growth is not associated with an absolute instability. The 
advantage of Wasserman & Kloker’s DNS solution is its ability to reveal the rather 
intimate details of the breakdown process. As such, the work is one of the foundation 
contributions. 
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Figure 3:  Mode-I velocity fluctuation contours (a) Figure 7 from Malik et al. (1999), (b) 

Figure 20b from Wassermann & Kloker (2002), and (c) Figure 11 from White & Saric 
(2002). 

 
 
At this time, the various approaches to the secondary instability problem, experimental, 
nonlinear PSE, and DNS, have achieved rather remarkable agreement in terms of 
identifying the basic mechanisms of the secondary instability, unstable frequencies, mode 
shapes, and growth rates. This comparison shows agreement on the location of the 
breakdown and that it is associated with an inflection point in the spanwise direction (an 
extremum in ∂U/∂z). 

 



FZM-9113 
June 15, 2005 

 

 33

Recommendation 
A lot of detail was presented above for the experiments and NPSE to illustrate that the 
crossflow instability is becoming much better understood and NPSE can be used as a 
validation tool. One interesting result is that different roughness heights (Rek order 1) 
produce the same saturation amplitude and transition location in the experiments.  This 
implies the possibility for an amplitude-based transition prediction scheme.  It also 
suggests that LST (assuming stationary crossflow and without curvature) can still be used 
to estimate the transition location with N determined from available experimental data.  
Low-amplitude initial crossflow disturbances remain linear for a long distance (as 
mentioned above).  Again LST is best used in a comparative sense. 
 



FZM-9113 
June 15, 2005 

 

 34

5  Approximate eN Methods 
 
The preceding discussion has examined LST (linear stability theory) methods and their 
application to transition calculations.  These methods solve a series of local eigenvalue 
problems for a specified boundary layer profile and assume eigenmodes are independent 
and small in amplitude so that the mean flow is unaffected.  For these eigenvalue 
problems several of the free parameters must be specified, and these typically include the 
disturbance temporal frequency and spanwise wavenumber.   The eigenvalue solution 
yields the associated streamwise wavenumber and spatial growth rate.  Alternate 
eigenvalue formulations can be devised to specify and solve for other combinations of the 
temporal and spatial parameters.  Note that the solution for each unstable mode, 
frequency or spatial wavenumber requires a new eigenvalue computation.  In order to 
integrate local growth rates to make overall disturbance growth estimates these 
calculations must be made for each streamwise  station (in 2D) where boundary layer 
profiles are available.  In 3D another dimension is added and these sets of streamwise 
calculations must be repeated for each spanwise station.   
 
While these LST methods are far less computationally intensive than the LPSE or NPSE 
methods, they require more computational resources than are available in most design 
environments.   As a result approximations to full LST methods are used when boundary 
layer transition calculations are required in the context of CFD methods.  This is the 
approach selected for the RATTRAP work to integrate transition methodologies into 
Navier-Stokes CFD methods.    
 
These simplified methods take the form of functional approximations such as parametric 
equations (based on curve fits), table or database lookup and interpolation or more 
complex response surface methods (such as neural networks) to approximate LST growth 
rates based on a set of parameters that characterize the boundary layer.   The range of 
applicability of these approximate methods is often limited to specific types of problems 
(e.g. 2D TS calculations at subsonic to transonic speeds).  Within their range of 
application these methods can be very good substitutes for more comprehensive LST 
calculations. 
 
5.1   Envelope methods vs mode tracking methods 
 
Two approaches are used for integrating N factors for full LST transition calculations or 
approximate LST methods for both streamwise and crossflow disturbances.   The 
envelope method is a simplified scheme which computes a single N factor associated 
with the maximum growth rate locally (finding the most unstable wave on a local basis) 
as one marches downstream.   A mode tracking method calculates N factors for all 
waves, one of which will be the most unstable wave.  The envelope methodology 
produces a slightly higher N factor and is conservative in transition location prediction 
(i.e. transition predicted farther upstream than a mode tracking calculation).   Envelope 
methods tend to be based on parametric functions of boundary layer and flow parameters, 
usually in the form of curve fits to LST results.  Mode tracking methods tend to be based 
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on table driven schemes that interpolate a database of growth rates (from LST results) 
across the range of modes or frequencies.  
 
 
5.2   Approximate TS Methods  
 
5.2.1 Drela’s Envelope eN TS Method 
 
The most widely used method for 2D TS stability calculations is the envelope eN 
approach developed by Drela (1986) and used in his XFOIL and MSES airfoil analysis 
and design programs.  This method is currently used in the prototype RATTRAP code to 
calculate streamwise TS transition.   
 
The method approximates the spatial amplification envelopes for incompressible Falkner-
Skan profiles in H-ω-Reθ space, as shown in Figure 4.   The integrated growth rates for 
the range of amplified frequencies are shown with solid lines, along with a dashed line 
through the maximum growth loci for each shape factor (this growth is integrated 
assuming a similar boundary layer with varying Reynolds number).  The key to the 
simplicity of the method is the remarkable linear character of these maximum growth 
envelopes.   

 
Figure 4:   Amplification growth for Falkner-Skan profiles with approximate maximum 

growth envelopes 
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The method uses parametric equations for the critical Reynolds number and slope of the 
envelope line (maximum of integrated growth rates, over all frequencies for a given 
shape factor). 

 
 
This disturbance growth rate can be integrated downstream from the point where 
Reθ=Reθ0 to arrive at an overall amplification factor.  Drela extended the growth rate 
equation from de Gleyzes et al. (1983) to give the spatial amplification in terms of the 
streamwise coordinate, ξ. 

 
with the definitions 

 
To account for compressibility effects the shape factor H used in these relations is 
actually Hk, the so-called kinematic shape factor, which ignores density changes on 
boundary layer thicknesses from compressibility effects.  The reasoning is that velocity 
profiles are more relevant for boundary layer stability than density weighted velocity 
profiles.  The empirical formula below relates the kinematic shape factor to the 
conventional shape factor and edge Mach number. 

 
This simple envelope growth relation can be easily applied to calculate transition in a 
CFD method using an appropriate Ncrit threshold and this combination provides a 
remarkably accurate approximation to LST for many applications.   The method has been 
extended for supersonic streamwise TS calculations by Sturdza, who added 
compressibility corrections for his Mach 1.4-2.2 laminar wing design application.   
 
One limitation of the method is that the correlation is based on integrated growth for 
similar FS profiles.  Users of the method have encountered varying levels of transition 
errors for nonsimilar flows. 
 
5.2.2 Drela’s Full eN TS Method 
 
Drela’s simplified envelope eN method (Drela, 1986), described above, has been used 
with good results for many applications.  This formulation is strictly correct for only 
similar boundary layers (boundary layers with constant shape factor over the area of 
instability and growth).  When this method is applied to strongly nonsimilar boundary 
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layer the transition predictions show errors in terms of integrated growth levels.  These 
errors show up strongly in flows with H(x) increasing, such as on the upper surface of an 
airfoil with a separation bubble.  These problems motivated the recent development of a 
full eN method  for 2D (streamwise) TS transition (Drela, 2003). 
 
Drela’s recent full eN method is based on a more complete approximation to LST using a 
functional approach to calculate growth rates for a full range of frequencies (i.e. a mode 
tracking method that gives growth rates for any frequency).  The method uses a table of 
growth rates for the full range of amplified frequencies, parameterized by three 
parameters, H, Reθ, and non-dimensional frequency.   

 
 

The growth rates for the table are based on Orr-Sommerfeld calculations for boundary 
layer profiles from the incompressible Falkner-Skan family with modifications for 
reduced reverse flow in boundary layers with separation.   Note that this is the same 
boundary layer family that was used to derive the envelope method but this method 
avoids integrating growth for a single similar profile, instead integrated growth is based 
on locally varying growth rates (i.e. nonsimilar boundary layer).  

 
 
 

The differences in transition predicted by the full eN method and the envelope eN scheme 
are shown in Figure 5 for a low-Rn E387 airfoil.  The upper chart shows the upper and 
lower surface shape factor while the lower chart shows the corresponding eN predictions 
from the envelope method and the full eN (frequency tracking) method.   The two 
methods agree well in terms of integrated growth factor for the lower surface where the 
shape factor is roughly constant (near similar) but show large differences on the strongly 
nonsimilar upper surface boundary layer.  
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Figure 5:  Shape factor and amplification growth for low-Rn E387 airfoil calculated with 

envelope method (dashed line) and frequency tracking method (solid lines). 
 
This method interpolates tables of complex α (streamwise wavenumber and growth rate) 
parameterized by the two boundary layer parameters H and Reθ and by frequency ωθ/ue 
using tri-cubic splines.  The trick in table or database methods is to minimize the size and 
dimensionality (number of independent parameters) for the table.  This reduces both the 
cost of producing and using the method.  In order to produce a compact table for the wide 
range of parameter values required for H, Reθ, and ω Drela used the shape factor, H, and 
two modified parameters (related to Reynolds number and non-dimensional frequency).  

 
The parameter ranges used to characterize the full range of practical boundary layer 
conditions were. 
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In order to use this method the growth rates for all frequencies (or a most amplified 
subset of frequencies of interest) must be tracked and integrated to give N factors at 
streamwise locations.  Transition is assumed for the most amplified mode (frequency) 
that exceeds the selected Ncrit threshold.  Note that Drela’s implementation of this method 
within the MSES code tracks 20 discrete frequencies.  The extra computation associated 
with tracking a set of discrete modes adds to the computational cost of using this 
technique although the overall method remains vastly faster than full LST calculations.  
 
 Drela’s full eN method appears to be the best candidate for a mode tracking streamwise 
TS transition code for use with RATTraP.  This code could be used alternately to the 
simpler envelope eN method and will produce more accurate transition estimates for 
nonsimilar boundary layer flows.  
 
5.2.3 Sturdza’s Compressible Envelope eN TS Method 
 
Sturdza (2004) developed approximate eN methods for streamwise TS and crossflow 
transition in the context of laminar flow design for supersonic wings.  His approach was 
to separately treat streamwise and crossflow transition calculations.  His approach for 
streamwise transition used the computationally simple 2D envelope TS method of Drela 
(1986) and added compressibility corrections for application to wings at Mach 1.4-2.2.  
This approach completely ignores oblique TS modes at these Mach numbers which are 
not modeled in 2D eN methods. 
   
Sturdza’s version of the streamwise envelope eN method was developed by correlating 
with LST results from LASTRAC.   His method includes new terms involving 
temperature ratio for compressibility correction to the critical Reynolds number  

 
And compressible corrections to the amplification rate equation 

 
The supersonic biconvex wings Sturdza studied had long regions of highly favorable 
pressure gradient (a core feature of the basic supersonic laminar flow designs he was 
modeling).  Although his envelope eN method worked very well for adverse gradients, 
amplification in favorable pressure regions was over-predicted as compared to 
LASTRAC’s LST results.  Sturdza attributed this to the same similar boundary layer 
issue discussed in connection with Drela’s envelope eN scheme and suggested that a 
mode tracking scheme such as Drela’s full eN method (2003) or the Stock and Dagenhart 
(1989) mode tracking method would better model this behavior.  Sturdza proposed an ad-
hoc modification of his basic scheme to match reduced TS instability growth in favorable 
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pressure gradients by using a “lagged” kinematic shape factor.   He proposed further 
tuning the Km term in his amplification rate equation using 

 
where the averaged value of Hk is given by an upstream weighted integral of Hk from the 
instability point. 

 
Due to the narrow focus for his work Sturdza’s modifications to Drela’s envelope eN 
scheme were highly tuned to work for biconvex and near-biconvex supersonic wings 
where they appear to closely approximate LST results from the LASTRAC code (used to 
develop the correction scheme).  There are indications that these correction terms may 
not be as well tuned for problems at low or transonic speeds and further work should 
correlate these for a broader class of flow conditions. 
 
5.2.4 Crouch, Crouch and Ng Neural Net eN TS Method  
 
Crouch, Crouch and Ng (2001) developed a rapid, approximate eN method for TS and 
crossflow transition in the context of use with 3D CFD codes.  Their method used a 
neural network approach to implement a mode (frequency) tracking method for TS 
transition and an envelope eN method for stationary crossflow transition.  
 
Crouch et al. calculated a large database of growth rates for Falkner-Skan-Cooke profiles 
(incompressible, infinite swept wing) using an LST method.  The boundary layer profiles 
for this database span a full range of Falkner-Skan Hartree parameters (corresponding to 
streamwise shape factors), Reynolds number and boundary layer edge sweep angles.  
These Orr-Sommerfeld eigenvalue calculations determined maximum growth rates over 
all spanwise wavenumbers.  Rather than devise a compact data table and interpolation 
scheme for these growth rates (as in Drela’s full eN method, 2003), neural networks were 
used to model the complex response surfaces corresponding to these maximized growth 
rates.  These neural networks were trained using the growth rates and corresponding input 
parameters for the boundary layer profiles, frequencies and flow conditions.   
 
One unique feature of this work was the scheme used to parameterize the boundary layer 
profiles.  Rather than use integral shape parameters for the streamwise and crossflow 
profiles, Crouch et al. chose to use the first derivatives of the velocities (streamwise and 
crossflow) at six uniformly spaced locations across the boundary layer, as shown in 
Figure 6.  This is a very general way to use a (relatively) small number of input 
parameters to characterize any profile.  Also, in this way, the neural network has much 
the same profile information that was used in the LST analysis to generate the growth 
rates so that the neural net may more fully approximate the eigenvalue solutions. 
 
Nominally, the neural nets are driven with 16 parameters, including the streamwise and 
crossflow profile derivatives, the streamwise and crossflow Reynolds number, the edge 
streamline angle and the disturbance frequency.   Crouch et al. found the TS neural net 
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was excessively sensitive to crossflow profile inputs so their implementation for 
streamwise transition neglects crossflow profile information completely, in effect 
reducing their TS method to a streamwise eN approximation.    
 

 
Figure 6:  Profile parameters using streamwise and crossflow velocity derivatives at six 

points across boundary layer 
 
Once the neural network was trained (setting weights for inputs and interconnection 
levels in the network) it could be used as a black box to process flow and profile inputs 
into growth rates.  This TS neural net implements a mode tracking eN method which 
calculates growth rates maximized over all spanwise wavenumbers for a given frequency 
(mode).  The neural net only approximates the training inputs derived from growth rates 
calculated for incompressible Falkner-Skan-Cooke profiles.  Crossflow profile inputs are 
ignored so this method only responds to streamwise profile inputs.  Thus this neural net 
approach is both less accurate and more complex than the table driven full eN approach of 
Drela which was derived from the same profile assumptions.      
 
The TS neural net implemented by Crouch et al. shows significantly greater errors in 
approximating growth rates than the corresponding neural net trained for stationary 
crossflow envelope eN growth rates.  That may be an indication that approximations to 
the crossflow problem are better characterized by this choice of profile and flow inputs.  
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5.3   Approximate Crossflow Methods 
  
5.3.1 Dagenhart’s eN Crossflow Method (MARIA)  
 
The development of the MARIA code by Dagenhart (1981) was a key work in 
approximate eN methods for crossflow transition.  This code was a mode tracking eN 
stationary crossflow method, generating spatial growth rates as a function of spanwise 
wavenumber and several basic crossflow boundary layer parameters.  The MARIA code 
could approximate results of more complex linear stability codes (i.e. SALLY, COSAL) 
using a fraction of the computational effort. 
  
Dagenhart’s method was based on a table of stationary crossflow growth rates derived 
from LST analysis of 10 streamwise boundary layer stations on a transonic swept, infinite 
wing with a Pfenninger 970 airfoil.  The crossflow boundary layer profiles were 
parameterized in terms of three parameters, the crossflow Reynolds number, shape factor 
and velocity ratio, as defined in the Figure 7.  This choice of crossflow parameters has 
been validated by subsequent investigators. 

 
Figure 7:  Crossflow velocity profile and crossflow profile parameters 

 
The crossflow shape factor was defined by the thickness, �10, which corresponds to the 
height at which the crossflow velocity drops to 10% of the maximum velocity and the 
height at the velocity maximum. The crossflow Reynolds number was defined by the 
thickness, �10 and maximum crossflow velocity, Wm. 
 
In his LST calculations for the 10 boundary layer stations Dagenhart found that the 
curves of constant amplification rate in the crossflow wave direction (i.e. growth rate vs 
Reynolds number and spanwise wavenumber) had similar shapes for all profiles.   He 
further found that the point of instability for crossflow growth was well characterized by 
Reynolds number and shape factor, as shown in Figure 8.   
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Figure 8:  Critical crossflow Reynolds number vs shape factor 

 
Dagenhart’s work also led him to find that the spatial amplification rate in the pure 
crossflow direction (which is very close to the direction for maximum crossflow 
instability growth for the combined streamwise and crossflow boundary layer) scaled 
directly with the crossflow velocity ratio Wm/ue.   
 
The critical Reynolds number correlation and the velocity scaling relationship allowed 
Dagenhart to apply table data for his airfoil profiles to a more general range of crossflow 
boundary layers (or at least to boundary layer profiles that fell within the range of 
crossflow shape factors present on the 970 airfoil).  His scheme works on an arbitrary 
input boundary layer using the shape factor to find the critical Reynolds number from the 
correlation, then interpolating the table data for growth rates at the input shape factor and 
Reynolds number. Dagenhart’s interpolation scheme used offsets to the table Reynolds 
numbers by differences in critical Reynolds number for table entries with the nearest 
shape factor and the input boundary layer. 
 
Dagenhart also uses an approximate method to find the dividing point between upstream 
and downstream regions of opposite crossflow rotation (rotation direction switches in 
regions of opposite pressure gradient). The point of reversal is determined by a weighted 
average of the crossflow velocity across the boundary layer. 
 
For simplicity, Dagenhart integrates growth rates in the direction of the inviscid outer 
streamline.  He observes that angles between the inviscid outer streamline and the group 
velocity vector are less than 3o.  In addition, arc-lengths along the potential flow 
streamline path or the group velocity path differ by less than 1.8%.  The use of the 
external streamline direction for growth rate integration is within the limits of the 
accuracy of the approximate method.  
 
The general approach used by Dagenhart will also be used for the mode tracking 
crossflow methodology for RATTraP.  We will replace Dagenhart’s limited table of 
growth rates (parameterized by shape factor, Reynolds number and spanwise 
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wavenumber) with a more complete table of boundary layer growth rates using the 
Falkner-Skan-Cooke profile family. The same scaling of growth rate with crossflow 
velocity ratio will be used to minimize table dimensionality.   
  
5.3.2 Sturdza’s Compressible Envelope eN Crossflow Method 

Sturdza (2004) and Kroo and Sturdza (2003) developed approximate eN methods for 
streamwise TS and crossflow transition in the context of laminar flow design for 
supersonic wings.  Sturdza split the transition calculation into streamwise TS and 
crossflow problems.  His approach for crossflow transition was an envelope eN method 
for stationary crossflow growth maximized across all spanwise wavenumbers.  Elements 
of his approach are derived from the work of Dagenhart (1981) in his MARIA method.  
Sturdza adopts Dagenhart’s parameterization of the crossflow boundary layer in terms of 
three parameters, the crossflow Reynolds number, shape factor and velocity ratio, as 
shown in the Figure 9.  The crossflow thickness δcf is defined by the point on the velocity 
profile where the crossflow velocity is 10% of the maximum wmax. 

 
Figure 9:  Sturdza’s crossflow boundary layer parameters 

 
Using pseudo-similar “similarity sequences” of streamwise profiles combined with scaled 
and modified crossflow profiles Sturdza used LST results from LASTRAC to construct a 
parametric model of the envelope of maximum crossflow growth.  This model uses a 
minimal compressibility correction, which validates Dagenhart’s original contention that 
crossflow was largely unaffected by Mach effects.  Sturdza’s parametric relation for 
crossflow growth rate as a function of crossflow Reynolds number, shape factor and 
velocity ratio takes the form 

 
with the critical crossflow Reynolds number Rcfo defined by 

 
This simplistic definition of critical crossflow Reynolds number is troubling because it 
contradicts the dependence of Rcfo on crossflow shape factor that played such a key role 
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in Dagenhart’s MARIA development.  This relationship may be specific, or at least most 
applicable, to Sturdza’s supersonic wing boundary layers. 
 
As discussed in the description of Sturdza’s compressible modifications to the envelope 
eN TS method the focus for his work was biconvex  and near-biconvex supersonic wings 
at Mach 1.4-2.2.  The range of application for these parametric relations is unclear.  
Crossflow growth rates predicted by this approach should be checked at low or transonic 
speeds to correlate these relations for a broader class of flow conditions. 
 
We will investigate the use of Sturdza’s crossflow envelope eN correlation for use with 
RATTraP.  If this parameterization works at low and transonic Mach numbers we can 
adopt it as the crossflow envelope method.  Sturdza’s critical Reynolds number 
correlation may be replaced with Dagenhart’s original correlation if that proves more 
accurate. 
 
5.3.3 Crouch, Crouch and Ng Neural Net eN Crossflow Method 
  
The neural net method of Crouch, Crouch, and Ng (2001) was described in the section on 
TS transition.  The method is similar for crossflow transition, except that an envelope 
method is used for crossflow.  The neural net for crossflow was trained with the 
frequency set to ω=0 so that only stationary crossflow growth was modeled.  The 
crossflow profile is shown in Figure 6. 
 
The crossflow neural net implements an envelope eN method which calculates stationary 
mode growth rates maximized over all spanwise wavenumbers.  It is important to keep in 
mind that a neural net only approximates its training inputs. These inputs were derived 
from growth rates calculated for incompressible Falkner-Skan-Cooke profiles, not from 
nonsimilar profiles that are present on “real” swept wings.  This use of idealized profiles 
is a common issue in development of approximate eN methods.  The neural net approach, 
combined with this parameterization of the boundary layer with a set of velocity 
derivatives, may have advantages in terms of increased accuracy if the training set for the 
network is extended to include a wider range of nonsimilar boundary layers. 
 
The crossflow neural net implemented by Crouch et al., characterized by this choice of 
profile and flow inputs, closely models the results from LST calculations and appears to 
be considerably more accurate than the neural net implemented for TS growth rates.  It 
would be useful to compare the overall accuracy of this envelope crossflow method to the 
parametric formulation used by Sturdza (2004), though this is unlikely to occur as this 
neural net crossflow method is proprietary to Boeing.  
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6  Attachment Line Instabilities 
 

6.1   Empirical correlations  
 
Near the leading edge of a swept  wing, there is a line known as the attachment line 
(corresponding to the stagnation line of an unswept wing) along which the flow is 
entirely spanwise (see Figure 10).  That is, there is no chordwise component to the 
potential flow outside of the boundary layer.  The flow along this attachment line is 
usually contaminated with turbulent flow at the root from the fuselage, and affects the 
stability of the flow on the rest of the wing.  That is, if the attachment line boundary layer 
is turbulent, the boundary layer on the entire wing is turbulent.  The stability of the 
attachment line boundary layer is an important problem for swept wing transition 
prediction, and this will be addressed in the RATTraP transition prediction modules. 
Leading-edge radius affects attachment-line contamination and instability (Pfenninger 
1977; Poll 1985). 
 
For the practical purpose of predicting transition on the attachment line, a criteria using 
the momentum thickness boundary layer Reθ has been used almost exclusively.  
Analytical, computational, and experimental attempts to characterize attachment line 
transition have historically reduced to this criteria.  At this point there seems to be no 
other available engineering strategy for predicting transition on the attachment line. 
 
The initial flow condition at the root of the wing determines the critical Reynolds 
number.  If the flow is turbulent at the wing root, there exists a Reynolds number below 
which the turbulent flow disturbances are damped and the flow becomes laminar.  If the 
flow is laminar at the root or if turbulent disturbances have been removed by suction or 
by some device such as a Gaster bump, then above a certain value of Reθ small 
disturbances grow and result in a turbulent attachment line. 
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Figure 10:  Flow around a swept wing attachment line 

 
 
Pfenninger(1965) was the first to propose an attachment line transition criteria based on a 
Reynolds number  

kVR ν/∞= ,  

where ∞V  is the spanwise freestream velocity and k  is the chordwise velocity gradient of 
the potential flow outside of the boundary layer at the attachment line 

 
dx

dU
k c= . 

Cumpsty and Head (1967) introduced the parameter *C  (the square of R )and 
demonstrated using an integral momentum equation that this is the appropriate similarity 
parameter to analyze attachment line boundary layers.  Using a relation for the 
momentum thickness for laminar boundary layers on an infinite yawed cylinder from 
Rosenhead (1963) the relation for the momentum thickness Reynolds number becomes 
 **4044.Re CL =θ  

Poll (1979) used the similarity parameter (also used by Rosenhead) 
 k/νη =  
and an associated definition of the Reynolds number 
 νη /∞= VR  
to get the same result as Pfenninger (1965)and Cumpsty and Head (1967).  After using 
the potential flow result for the chordwise velocity gradient, this reduces to  
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νθ 2

tansin404.Re ΛΛ
= ∞rQ

L .  

This result is only valid for infinite yawed cylinders, but should be reasonably accurate 
for an infinite swept wing with a cylindrical leading edge.  For a leading edge with 
ellipticity ε, this becomes 
 

 
νεθ )1(
tansin404.Re

+
ΛΛ

= ∞rQ
L . 

 
but can be controlled by keeping the leading-edge radius below a critical value.  
 
 
Many experiments have been done to find both critical Reynolds number values.  Gaster 
(1967) performed experiments an a Handley Page laminar flow wing at 43o sweep which 
indicated that the critical Reynolds number for a laminar boundary layer (small 
disturbances) was greater than 170 (the highest Reθ used in the experiment).  Gaster also 
designed a bump which bears his name, the purpose of which is to remove the turbulent 
boundary layer originating at the wing root to help stabilize the flow.  Cumpsty and Head 
(1969) conducted experiments on a swept wing model showing that laminar flow is stable 
up to Reθ=245.  Pfenninger and Bacon (1969) performed experiments on a 45o swept 
airfoil and found the critical Reθ for laminar flow is 240.  The experiments by Poll (1979) 
indicated that laminar flow was stable to Reθ=230.  A good general value for the onset of 
transition for an uncontaminated root flow is Reθ=240. 
 
If the wing root is contaminated with turbulence from the fuselage or some other 
structure (pylons, for instance), the disturbances feeding into the boundary layer are 
relatively large and the critical value of Reθ is much lower.  Pfenninger (1965) conducted 
flight tests to discover that laminar flow was obtained for  Reθ=100 for turbulent root.  
Gregory and Love (1965) performed wind tunnel tests on a swept airfoil and set the 
critical value at 95.  Gaster (1967) first observed turbulent spots at Reθ=88, with the flow 
fully turbulent at Reθ=104.  Cumpsty and Head (1969) and Poll (1985) used the same 
swept wing model to fix the value at 100.  There seems to be wide agreement in the 
literature that the critical value for damping of turbulent contamination from the root is 
Reθ=100.   
 
Several investigators have used DNS and linear and nonlinear analysis techniques to look 
at the nature of the instabilities and to confirm previous experimental results.  Hall, 
Malik, and Poll (1984) used nonparallel linear stability theory on a swept Hiemenz 
(stagnation point) flow and predicted a critical Reθ=245.  Spalart (1989) used a DNS 
method to confirm this result.  Hall and Malik (1986) attempted to bridge the gap 
between the turbulent and laminar originating flow by using weakly nonlinear theory and 
DNS, and found that subcritical disturbance growth corresponds to branch II of the 
neutral curve.  Eigenvalue analysis of Lin and Malik (1996, 1997), and DNS work by 
Joslin (1995, 1996) has confirmed previous results. 
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Recommendation 
Although empirical, this correlation has been demonstrated to be valid over the speed 
range from incompressible to low supersonic.  We will use this in RATTraP. 
 
 
 
 
 

6.2   Other Methods 
 
DNS has been performed to provide the details of the attachment-line region but in our 
opinion is not needed as a tool in the present studies.  The attachment-line momentum-
thickness Reynolds number correlation has been demonstrated to be valid over a wide 
speed range both here in the United States and in Europe.  There seems to be no other 
transition prediction method analogous to the eN method for TS and crossflow 
instabilities for attachment line flows.  This approach seems to be the only viable method 
of this class. 
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7   Laminar-Turbulent Interaction 
 

7.1   Empirical correlations  
 
Turbulent contamination should propagate outward at an angle of about 10°, consistent 
with the multitude of experiments and data on the growth of turbulent spots in a laminar 
boundary layer (e.g. Schubauer & Klebanoff (1955) – see sketch on p. 456 of Schlichting 
“Boundary-Layer Theory, Seventh Edition”, McGraw-Hill 1979). This could be 
somewhat less with a strong favorable pressure gradient: the spanwise propagation of 
turbulence is related to local T-S instabilities and a favorable gradient stabilizes T-S. The 
opposite would be true for an adverse gradient.  There are very few data available, except 
the work on turbulent spots by various groups.  The upcoming stability and transition 
tests at Texas A&M by William Saric should provide more info on spanwise 
contamination. 
 

7.2   Other Methods (turbulent diffusion) 
 
The transport equation which is currently used to calculate the N factor for the eN 
envelope TS method can be modified to include a diffusion term.  It may be possible to 
tune this diffusion term such that turbulence which is present at some surface can diffuse 
into the laminar boundary layer as it is convected with the flow.  There has been no work 
on this in the past but this may be investigated as part of this effort. 
 
 
Recommendation 
The 10o rule will be used as the method of choice since it is the only one with empirical 
data to back it up, but consideration will be given to the turbulent diffusion method as 
well. 
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8   Compressibility Effects 
 
8.1   Compressibility corrections 
 
The inclusion of compressibility does not change the fundamental physics for subsonic 
Mach numbers.  Compressibility has a stabilizing influence (Mack 1984, Arnal 1994). 
 
With the current interest in high-speed flight, there is also a keen desire to determine 
correlating parameters, based purely on basic-state profiles, that can be easily 
incorporated into existing basic-state codes and will predict transition location (or trends) 
for crossflow-dominated problems.  To evaluate parameters quantifying stability 
characteristics, Reed & Haynes (1994) examined the linear stability of the supersonic 
flow over a rotating cone at zero incidence.  When compressibility and cooling effects are 
included (per an Illingworth transformation), a relationship is found between a new 
crossflow Reynolds number and the maximum crossflow velocity at transition.  This 
result has been verified with the yawed-cone data of King (1991), Stetson (1982), and 
Holden et al. (1994).  The new crossflow Reynolds number is calculated solely from the 
basic-state profiles and, as such, it can aid in conceptual (only) transition prediction and 
design for 3-D boundary layers. 
 
8.2  Other methods 
 
Considerable uncertainty exists in both the prediction and control of transition in 
supersonic flows due to the dearth of reliable experiments.  Here we concentrate on the 
basic fundamental differences between subsonic and supersonic streamwise instabilities 
in order for the reader to better understand transition control and prediction methods.  
The paper by Mack (1984) is the most complete description of compressible stability 
available anywhere. 
 
The linear stability analysis of supersonic boundary layers uncovers three major 
differences between it and the subsonic analysis. 
  
8.3   Generalized Inflection-Point Criterion 
  
The extension of the Rayleigh inflection-point criterion to compressible boundary layers 
has an important change.  Lees & Lin (1946) studied the temporal growth of 2-D inviscid 
disturbances in parallel, perfect-gas flows.  (Analogous results for 3-D disturbance in a 3-
D boundary layer can be found using the "tilde" coordinate system described by Mack.  
This coordinate system is rotated so that the "x" direction coincides with that of the phase 
velocity.)  They classified the disturbance according to the disturbance phase speed cr 
relative to the boundary layer edge velocity Ue: 
 
 Subsonic:  Ue-cr < ae 
 Sonic:  Ue-cr = ae 
 Supersonic:  Ue-cr > ae 
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where ae is the speed of sound at the edge of the boundary layer.  One of their most 
important results was that a neutral subsonic solution will exist if and only if there is a 
generalized inflection point ys in the boundary layer 
 
 D(ρDU) = 0        at y = ys > yo 
 
where yo is the point where U = 1-1/Me and Me is the local edge Mach number.  The 
proof that the presence of a generalized inflection point implies the existence of a neutral 
solution requires that the local flow velocity be subsonic throughout the boundary layer 
relative to the disturbance phase speed.  In this case, the disturbance phase speed is equal 
to the tangential velocity component at the generalized inflection point.  Moreover, the 
neutral solution will have a unique wave number.  The presence of a generalized 
inflection point is also a sufficient condition for the existence of an instability. 
 
The boundary layer on an adiabatic flat plate in a compressible flow always features 
D(ρDU) = 0 somewhere in the flow.  Thus, even zero-pressure-gradient flows are subject 
to inviscid instabilities that grow with increasing Mach number.  As ys moves away from 
the wall with increasing Mach number, the range of unstable frequencies is enlarged at 
high Reynolds numbers.  This effect occurs up to a Mach number of approximately 5.  In 
contrast to M=0, when viscosity is considered at M>1, it may be stabilizing relative to the 
dynamic instability. 
 
8.4   Multiple Acoustic Modes:  Mack Modes 
 
One of the most significant developments in compressible theory comes from Mack, who 
discovered a new family of solutions to the compressible equations.  They can be 
explained by considering the inviscid stability equation in the form 
 
 ∂2ψ/∂y2 + (1-M2) ∂2ψ/∂x2 + f(M, ψ, ∂ψ/∂y) = 0 
 
where 
 
 ψ = v/(αU + βW - ω)  
 M=(αU + βW - ω) Me / [(α2 + β2) T] 1/2 
 
M(y) is the relative Mach number between the local basic-state velocity and the 
propagation speed of a neutral wave.  Me is the edge Mach number.  Here, we recall that 
and take advantage of the fact that ∂2 ψ/∂x2 was the source of -(α2 + β2) ψ in the 
disturbance equation.  Obviously, when M < 1, this equation is elliptic and the eigenvalue 
is unique as it is in the case of incompressible inviscid theory.  When M > 1, this 
equation is hyperbolic and an infinite discrete set of eigenvalues can satisfy the boundary 
conditions.  M = 1 at y = ya in the boundary layer and ya is called a turning point.  The 
solution of this equation can be found by using WKB methods.  For y<ya, the solutions 
are oscillatory and for y>ya they are exponential. 
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Physically, the disturbances propagate at a speed that is subsonic relative to the edge 
velocity, but supersonic relative to the region near the wall (y<ya).  Thus, for an adiabatic 
flat plate with Me = 3.8, disturbances with phase speeds cr > 0.5 are supersonic with 
respect to the wall region (Morkovin 1991).  At the same phase speed cr, a sequence of 
wavenumbers satisfy the differential equation and boundary conditions.  These extra 
solutions are higher modes and are most unstable as 2-D waves, because it is then that the 
relative supersonic region is of maximum extent.  They have shorter wavelengths than the 
usual T-S instability waves (first modes) since the wavenumber sequence is 
approximately 
 
 2αν/π = 1,3,5,7, ... 
 
They are not T-S waves by character or behavior and it is fitting that they be called Mack 
modes.  They represent sound waves that reflect inviscidly between the solid wall and the 
relative sonic line in the boundary layer.  See also Mack (1987). 
 
8.5   3-D Viscous Disturbances 
 
In the supersonic case (1 < Me < 10), Mack completed extensive computations of 3-D 
stability maps on a flat plate and found many important results (see Mack 1984 for the 
details and comparisons with experiment).  The earliest results showed that above a Mach 
number of 1, 3-D waves corresponding to the first viscous mode have a larger 
amplification factor than the corresponding 2-D disturbance.  (The opposite is true for 
subsonic flows.)  As the Mach number is increased above 1, the most unstable wave 
angle quickly increases to 45° at Me = 1.3, 55° at Me = 1.6, and 60° at Me = 2.2.  This 
phenomenon is due to decreased cross-stream mutual interaction between disturbances 
and decreased upstream influence both compensated by a lower effective 2-D Mach 
number.  Thus, the assumption of 2-D viscous disturbances cannot be made in supersonic 
flows. 
  
Mack (1987) gives an example of viscous multiple solutions, along with calculations of 
higher viscous discrete modes and the compressible counterpart of the Squire mode. 
 
Recommendation 
LST has been validated recently for high-speed flow (Lyttle et al. 2005) and is the 
method of choice.  Given the nature of the instabilities, 3-D disturbances must be 
considered.  However, for low supersonic Mach numbers, the growth rates of the 2-D and 
3-D disturbances of a flat plate are similar. 
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9   Intermittency 
 
9.1   Overview 
 
The typical aircraft boundary layer consists of regions of laminar, transitional and fully 
turbulent flow. Stability theory and the eN method can provide the location for the 
beginning of the transitional flow region. This region can extend over a significant 
portion of an aerodynamic surface. For a flat plate, the full length of the transitional flow 
region is approximately equal to the distance from the leading edge of the flat plate to the 
location of transition onset. Once the flow becomes transitional, LST is no longer 
relevant or valid, and a separate model must be applied to accurately simulate transitional 
flow.  Standard turbulence models are generally applied with modifications to account for 
the transitional flow using on an intermittency factor, γ, derived from an intermittency 
model.   
 
While algebraic turbulence models do not include any implicit relaxation effects once the 
turbulence model is “turned on,” transport equation turbulence models such as the k-ε, k-
ω and k-kl models include an implicit relaxation or history effect because of the 
turbulence model convection and source terms. However, these implicit relaxation effects 
are not nearly strong enough to account for the extent of the transitional flow region. 
 
The accurate prediction of the transitional flow region can be critical to accurate 
aerodynamic predictions. The shape of boundary layer velocity profiles in this region are 
bounded by laminar and turbulent profiles. In the early part of the transitional flow region 
they are more laminar-like, while in the later stages they are more turbulent-like. On an 
airfoil, transition often begins in a region of adverse pressure gradient flow that is 
susceptible to separation. Accurate prediction of boundary layer velocity profiles in the 
transitional flow region can affect separation predictions, and thereby aircraft 
performance predictions.  
 
As will be documented below, the phenomena governing the transitional flow region and 
turbulent boundary contamination of an adjacent laminar boundary layer are closely 
related. Thus it should be possible to develop an intermittency model that accounts for 
both transition and interference effects. 
 
The remainder of this section on intermittency will begin with a review of transitional 
flow theory and empirical results which have an impact on modeling. This will be 
followed by a review of transitional flow modeling. The intermittency modeling section 
will conclude with recommendations for RATTraP transitional flow modeling that 
leverage existing methods and experimental research. 
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9.2   Transition region experiments and theory 
 
9.2.1 Turbulent Spots 
 
Water table experiments by Emmons (1951) suggested that the transitional flow region is 
governed by turbulent spots. These spots are generated over a very narrow streamwise 
band and grow and merge downstream into a fully turbulent boundary layer. This finding 
replaced earlier assumptions that turbulence originated over an irregular front that 
oscillated in time and space, where the flow downstream of this front remained turbulent. 
With our understanding of turbulent spots, we now understand that at any instant in time 
along a streamwise trace there can be “intermittent” turbulent zones due to the presence 
of spots, and laminar zones in front of and in the wakes of spots. This observation has a 
fundamental effect on our understanding of the characteristics of spot growth and 
formation, which is essential to accurate transitional flow modeling. 
 
Schubauer and Klebanoff (1956) took detailed measurements of turbulent spots. They 
found that the boundary layer inside the turbulent spot was fully turbulent. The spots 
grow in both streamwise and lateral extent as they are convected downstream, with the 
leading edge of the spot advancing at 0.88 U∞ while the trailing edge advances at 0.5 U∞. 
The spot is approximately triangular, as shown in Figure 11. It grows laterally with a half 
angle near 10 degrees ±1 degree. Outside the spot, the flow remains laminar, but the 
fuller turbulent profile of the spot influences the laminar flow in its wake causing the 
laminar profile to be slightly fuller, while approximately maintaining the laminar 
boundary layer thickness that would be expected if the boundary layer were laminar from 
the leading edge. This subtle modification of the profiles in the laminar parts of the 
transitional flow region causes the profiles to be more stable to Tollmien-Schlichting 
instabilities. For this reason, spots are formed over a very narrow streamwise region, not 
at all points downstream of the location where the n factor reaches a critical value. 

 
Figure 11:  Spot has approximately triangular planform. (From Schubauer, 1956) 

 
9.2.2 Mean Boundary Layer Characteristics in the Transitional Region 
 
The characteristics of the transitional boundary layer for neutral pressure gradient flow 
were clearly identified by Dhawan and Narasimha (1958). They took detailed 
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intermittency measurements to determine the character of the intermittency function in 
the boundary layer. The intermittency function represents the fraction of time that the 
flow is turbulent at any location in the flow; the intermittency function γ is 1 wherever 
the flow is fully turbulent, and 0 where the flow is always laminar. Using these 
intermittency measurements and the probability based intermittency model of Emmons 
(1951), they were able to prove that turbulent spots were in fact generated over a very 
short streamwise distance. By their measurements, they were also able to determine some 
key characteristics of the mean flow in the transitional flow region. 
 

• The mean velocity profile in the transitional flow region is a linear combination 
of the laminar and turbulent velocity profiles: 

 

lt UUU )1( γγ −+=  
 

where Ut refers to a turbulent velocity profile whose origin is at the transition 
onset location. The momentum thickness at the origin of the turbulent boundary 
layer is equal to the laminar boundary layer momentum thickness at the transition 
onset location, while Ul refers to a laminar boundary layer whose origin is at the 
leading edge of the flat plate. 

 
• The skin friction near the end of the transition region “overshoots” the skin 

friction one would obtain for a turbulent boundary layer starting from the leading 
edge of the plate because of the aft location of the turbulent boundary layer 
origin. 

• The boundary layer displacement thickness can be obtained from the linear 
combination of laminar and turbulent thicknesses. (Substituting the definition of 
the transitional velocity profile in the definition of displacement thickness proves 
that this is the case.)  

• The momentum thickness is not a simple linear combination of laminar and 
turbulent thicknesses. 

 
9.2.3 The Intermittency Function 
 
Dhawan and Narasimha also developed a function for the intermittency that formed the 
basis for many intermittency models. They found that for a flat plate, 
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Where λ is a measure of the extent of the intermittency region, and A is a constant equal 
to 0.412, and xt is the location of transition onset. 
 

{ } { } 25.075.0 == −= γγλ xx  
 

This equation collapses intermittency data for a wide range of Reynolds numbers and 
flow conditions, including low supersonic Mach numbers and a range of freestream Mach 
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numbers. However, this relation by itself does not represent a model of the intermittency 
region because it requires experimental determination of λ.  
 
Mean pitot pressure measured very close to the surface of a flat plate is plotted along with 
intermittency in Figure 12. The pitot pressure is proportional to the square of the skin 
friction. Note that the skin friction continues to decrease below the laminar skin friction 
value for a short distance downstream of the location of transition onset, xt.  

 
Figure 12:  Surface pitot pressure and intermittency measured in the transitional region of 

a flat plate. (From Narasimha, 1985) 

 
 
9.2.4 Spot Formation and Propagation 
 
The intermittency region can be better understood by recasting the equation for the 
intermittency as a function of turbulent spot formation and propagation. We can rewrite 
the intermittency equation as 
 

( ) ⎥⎦
⎤

⎢⎣
⎡ −−−= 2exp1 txx

U
nσγ  

 
where we have set A/λ2 = nσ /U. The variable n is the spot formation rate, the number of 
spots generated per second per unit span length. The variable σ  is the nondimensional 
spot propagation rate. The spot formation and propagation rates are distinct phenomena 
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and hold out the possibility of developing models that logically account for the effects of 
freestream turbulence and streamwise pressure gradient. 
 
The spot propagation parameter quantifies the physical growth of turbulent spots. It can 
be defined as  
 

∫= dxtxb
x
Ut ),(3σ  

 
where b is the width of the spot at some instant in time, t, and x station. This integration is 
generally performed on a plane parallel to the wall, either at the wall or a short distance 
off of the wall, since the spot planform is relatively constant until the outer portion of the 
boundary layer is reached. The velocity U is the freestream velocity. This equation is 
integrated over one spot at one instant in time. The spot propagation parameter turns out 
to be approximately constant for zero pressure gradient flows, with values ranging 
between 0.25 and 0.29 according to Narasimha (1985) and Mayle (1991). The spot 
propagation parameter represents the speed and size of the turbulent spot downstream of 
the formation point. The slower the spot moves and the more it grows as a function of x, 
the more turbulent area will be generated for each spot formed. 
 
Spot formation is more difficult to measure directly than is spot propagation. The spot 
formation rate is generally determined indirectly by measuring the intermittency as a 
function of streamwise location, determining λ, and then solving for n.   
 

2σλ
UAn =  

 
where A is the constant equal to 0.412 for neutral pressure gradient boundary layers.  
 
To this point, none of these results are useful for modeling the transitional flow region 
because they require measuring λ. However, modeling the formation rate and 
propagation parameter independently will prove useful.  
 
9.2.5 Pressure Gradient Effects 
 
Most transition problems of interest include streamwise pressure gradients. Initially, 
Dhawan and Narasimha (1958), Narisimha (1985) and Mayle (1991) assumed, based on 
very limited data, that intermittency region descriptions based on neutral pressure 
gradient boundary layers were applicable to flows with pressure gradient. Gostelow 
(1994) found that adverse pressure gradients had significant effects on the transition 
region. In a later paper, Gostelow (1996) compiled existing measurements for both 
favorable and adverse pressure gradients to determine the effects of pressure gradients on 
spot propagation σ and wedge half angle α. These studies clearly indicate that spot 
formation and propagation are strong functions of streamwise pressure gradient. Figure 
13 shows the spot spreading wedge angle as a function of the non dimensional pressure 
gradient parameter λθ, where λθ = (θ2/ν)(∂U/∂x). Figure 14 shows the spot propagation 
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parameter as a function of the pressure gradient parameter. Gostelow’s definition of σ 
used in Figure 1 is slightly different that the standard definition: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +=

ab
11tanασ  

where a is the velocity of the front of the spot and b is the velocity of the back of the spot. 
This definition assumes a triangular spot, whereas the Narisimha (1985) and Emmons 
(1951) definitions account for the actual size and shape of the spot. The triangular spot of 
Gostelow is smaller than the actually spot size, so his neutral pressure gradient 
propagation parameter is 0.14 vs 0.27 for the more exact measurements. Nevertheless, on 
a relative basis, Figure 14 clearly demonstrates that pressure gradient has a strong effect 
on spot propagation. 
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Figure 13:  Effect of non dimensional pressure gradient parameter on spot growth wedge 

angle α. (From Gostelow 1996) 

 
Figure 14:  Effect of non dimensional pressure gradient parameter on spot propagation 

parameter σ. (From Gostelow, 1996) 

In addition, Gostelow(1994) investigated the spot formation rate as a function of pressure 
gradient for adverse pressure gradients. In Figure 15, Gostelow plotted the non-
dimensional formation rate parameter, N, as a function of the non-dimensional pressure 
parameter for a range of freestream turbulent intensities. 
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In this equation,  θt  is the momentum thickness at the transition onset location. Again, 
pressure gradient has a significant effect on the formation rate parameter. While the non-
dimensional formation rate parameter N includes the propagation parameter σ, the very 
strong dependence of N on pressure gradient indicates that the spot formation rate 
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increases significantly as adverse pressure gradient strengthens. Fraser (1988) found that 
favorable pressure gradients continue the trend of Figure 15, with the spot formation rate 
decreasing as the favorable pressure gradient increases. 

 
Figure 15:  Effect of non-dimensional pressure gradient parameter on spot formation 

parameter N.  (From Gostelow, 1994) 

 
9.2.6 Freestream Turbulent Intensity Effects 
 
A great deal of the work to date on the transition region has been motivated by 
turbomachinery applications. As a result, significant attention has been paid to the effects 
of freestream turbulence, since the turbomachinery environment has high freestream 
turbulence levels due to the wakes of upstream components. For most aircraft 
applications freestream turbulence levels will be low. However, two cases where 
freestream turbulence effects will be important are: 1) when analyzing wind tunnel 
measurements of transition regions where freestream turbulence levels are much higher 
than flight, and 2) for aircraft components in the turbulent wake of upstream surfaces 
such as slotted flaps and high-lift devices. While freestream turbulence has a strong effect 
on the location of transition onset, it does not have a dramatic effect on the transition 
region. Narasimha (1985), (from Dey and Narasimha, 1984) found the non-dimensional 
spot formation rate parameter N reaches a constant of 0.7 x 10-3 for turbulent intensities 
above 0.3%.  Gostelow(1994) included new data and reconsidered some of the data used 
by Dey and Narasimha (1984) and concluded that the value of N continues to decrease at 
least up to a turbulence intensity value of 1% as shown in Figure 16. Turbulent intensity 
effects are also included in Figure 15, and the slope of the curves in Figure 15 and Figure 
16 should be compared. Gostelow (1994) concludes, “While there is an exponential 
dependence of transition length…on the levels of both adverse pressure gradient and free-
stream turbulence, the dependence on pressure gradient is much the strongest.” 
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Figure 16:  Effect of freestream turbulent intensity on spot formation parameter N. (From 

Gostelow, 1994) 

 
 
9.2.7 Reynolds Number Effects 
 
Generally, the effects of Reynolds number are accounted for automatically in the non-
dimensional parameters used to characterize the transitional flow region. However, a 
simple relation between intermittency length scale λ and the transition location was 
determined by Narasimha (1985) for neutral pressure gradient boundary layers in terms 
of Reynolds number: 
 

4/3Re9Re t=λ   
 
Thus given a Reynolds number based on the transition onset location, the transition 
length λ can be determined and the intermittency function evaluated. This relation is only 
valid for neutral pressure gradients. It implies that the ratio of the (length of the 
transitional flow region) to the (distance from the plate leading edge to the point of 
transition onset) decreases with increasing Reynolds number. 
 
 
9.2.8 Crossflow Instability Induced Transition Regions 
 
While the development of turbulent spots and the fundamental flow mechanisms in the 
development of turbulence arising from T-S instabilities are well understood, transitional 
flow mechanisms for crossflow transition are an area of active research. The breakdown 
of crossflow instabilities to turbulence can follow multiple paths. Crossflow instabilities 
can generate inflections in the streamwise profile that cause extremely rapid breakdown 
to turbulence. This breakdown can occur through either crossflow or T-S instabilities. 
Joslin (1995) performed a direct numerical simulation and showed that his solutions 
could be fit in the transitional flow region using an intermittency function for swept 
wings developed by Arnal (1984). In most cases of interest for swept wings, if transition 
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is caused by crossflow transition, it will occur relatively near the leading edge of the wing 
and the transitional flow region will be short. 
 
 

9.3  Transitional Region Modeling 
 
Transition region models for implementation with Navier-Stokes flow solvers fall into 
two basic categories, algebraic/integral models and transport models. Algebraic/integral 
models define the intermittency in the transitional flow region as a function of the 
location of transition onset and variety of integral boundary layer parameters. Transport 
models have a transport equation for the intermittency factor that is solved in addition to 
transport equation turbulence models.  
 
Algebraic/Integral models are better suited to RATTraP requirements because the models 
can be evaluated along the surface using a surface differential equation similar to the 
equations used to integrate the stability amplification factor. In addition, the 
algebraic/integral models can conform easily to the empirical transition region 
measurements. In contrast, transport equation models require the addition of a transport 
equation to a flow solver, which would be very difficult to make modular and portable. 
For these reasons, this section will review some of the algebraic/integral models in detail 
and give a brief review of transport equation methods.  
 
9.3.1 Zero Pressure Gradient Based Model – Narasimha 
 
Narasimha (1985) derived a basic model from the Dhawan and Narasimha (1958) 
transition correlations. The intermittency length is calculated from   
 

( ) ⎥⎦
⎤

⎢⎣
⎡ −−−= 2exp1 txx

U
nσγ  

 
 and the value of (nσ) is determined from the non-dimensional breakdown parameter N, 
 

3
3

107.0 −== x
v
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N tσθ

 

 
where θt is the momentum thickness at the onset of transition. Narasimha found the 
constant for this relation from zero pressure gradient boundary layer. By relating spot 
formation and propagation to the local momentum thickness instead of the x location of 
transition onset, the model can better take into account variations in the boundary layer 
thickness leading up to transition due to pressure gradients. However, it does not take into 
account the effects of the pressure gradient within the transition region. 
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9.3.2 Pressure Gradient Based Model – Dey and Narasimha  
 
Dey and Narasimha (1988) adjusted the relation for the non-dimensional breakdown 
parameter to account for favorable pressure gradients: 
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This model does not account for the much stronger effects of adverse pressure gradients 
later identified by Gostelow (1996) and only consider the effect of the pressure gradient 
at transition onset. 
 
 
9.3.3 Solomon – Gostelow model 
 
Gostelow (1994) developed an improved transition region model that accounted for the 
effects of adverse pressure gradients on the non-dimensional breakdown parameter. The 
curve fits for the Gostelow (1994) model are included in the Solomon (1996) model 
which appears to be the most complete algebraic/integral model available, since it 
includes the effects of pressure gradient and freestream turbulence on both the spot 
formation rate and the propagation parameter. This model will be presented in some 
detail. 
 
The non-dimensional breakdown parameter N is obtained from two curve fits, one for 
adverse pressure gradients, and one for favorable pressure gradients. 
 
For adverse pressure gradients, λθt > 0, 
 

[ ])ln(23.59)ln(134.2exp1086.0 2
tttt qqxN −−= −

θθ λλ  
 

where qt is the freestream turbulent intensity.  For favorable pressure gradients, λθt > 0,  
 

)10exp( 2/1
0 tNN θλ−=       

 
where N0 is the value of N at , λθt = 0. The spot propagation parameter σ is evaluated 
from the curve fit for pressure gradient of Figure 14. 
 

( )[ ]θλσ 9.52exp0.348.0/37.003.0 ++=  
 

The breakdown parameter N is used to determine the spot formation rate n. Because the 
spot formation occurs only very near the transition onset location, the pressure gradient at 
the transition onset location, λθt is used. The spot formation parameter is evaluated from  
 

v
n

N t
3σθ

=  

 



FZM-9113 
June 15, 2005 

 

 65

with the spot propagation parameter evaluated from the curve fit with the pressure 
gradient parameter evaluated at the transition onset location. Once n and σ are evaluated, 
the intermittency can be evaluated from the integral 
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In this expression, the spot propagation parameter is evaluated using the local value of 
the pressure gradient parameter λθ based on the laminar component of the boundary layer 
in the transition region. The propagation wedge angle can be determined from a curve fit 
of Figure 13. 
 

( )[ ]θλα 63.47exp72.279.0/14.224 ++=  
 

This model can be implemented without great difficulty into the RATTraP model. The 
integrals in the intermittency expression can be integrated using the surface integral 
routines in the external streamline direction, and then the intermittency can be evaluated 
from the above equation. Alternatively, the equation for the intermittency could be 
differentiated with respect to x, and then it could be integrated along streamlines. This 
approach would allow a diffusion term to be added to the intermittency equation to 
account for lateral variations in the intermittency so as to account for turbulent 
contamination and interference effects. The freestream turbulent intensity values can be 
obtained from the two-equation turbulence model values at the outer edge of the 
boundary layer in cases where an upstream turbulent wake interacts with the transitional 
flow region. 
 
The model was tested for a range of pressure gradients and turbulent intensities and gives 
much better predictions of the transitional flow region than do the Narasimha and Dey 
and Gostelow models. Figure 17 shows the streamwise velocity and pressure gradients 
for three flows over flat plates from Solomon (1996). In all three cases the pressure 
gradient varies significantly in the transition region. The predictions of the intermittency 
function with the Solomon model are much better than those of the Dey and Narasimha 
(1988) or Gostelow (1994) models. Figure 18 shows the intermittency function for a case 
with a favorable pressure gradient. The method labeled “New Method” is the Solomon 
(1996) model. Figure 19 shows the intermittency function for a case with a favorable 
pressure gradient followed by a weak adverse pressure gradient. Figure 20 shows the 
intermittency function for a case with an adverse pressure gradient. 
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Figure 17:  Streamwise velocity and pressure gradient parameter for three test cases from 

Solomon (1996). 

The Narisimha and Dey and Gostelow models do not account for variations in the 
pressure gradient in the transition region; the input parameters to the transition model are 
all determined at the transition onset location. As a result, in Case DFU3 where an 
adverse pressure gradient follows a favorable pressure gradient, (Figure 19), the 
Gostelow model predicts much too long of a transition region, while the Solomon model 
predicts the transition region very well because the spot propagation parameter grows as 
the pressure gradient becomes negative. Also note that both the experimental and 
Solomon model intermittency functions grow with a steep slope beyond 1.4 meters in 
Case DFU3 as compared to Case DFU1 where the pressure gradient parameter doesn’t go 
negative. Finally, note that the ratio of the transition region length to distance to transition 
onset is shortest in the adverse pressure gradient case DUA1, shown in Figure 20, as 
expected. While the Solomon model does not agree as well with the experimental data in 
this case as it does for favorable pressure gradients, it agrees with the experimental data 
far better than do the other two models presented. 
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Figure 18:  Intermittency prediction with three models for favorable pressure gradient, 

Case DFU1, from Solomon (1996). 
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Figure 19:  Intermittency prediction for three models for a favorable pressure gradient 

followed by a weak adverse gradient, Case DFU3, from Solomon (1996). 

 
Figure 20:  Intermittency prediction for an adverse pressure gradient Case DAU1 from 

Solomon (1996). 

 
The most difficult aspect of applying the Solomon model directly is the evaluation of the 
pressure gradient parameter in the transitional flow region using a momentum thickness 
based on laminar flow. Either an integral equation for the momentum thickness will have 
to be solved, or a correlation between the laminar and transitional momentum thicknesses 
will have to be derived. 
 
9.3.4 Transport Equation Intermittency Models 
 
Numerous transport equation intermittency models have been developed and tested. A 
comprehensive review of these models will not be provided here, but instead a brief 
overview will be given. These models may eventually be of interest in the RATTraP 
environment or for use in conjunction with the RATTraP models. These models have the 
advantage of including history effects automatically, and through diffusion terms can 
eliminate unrealistic spanwise variations in the intermittency while accounting for 
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turbulent contamination in laminar regions. On the negative side, the intermittency 
transport equations developed to date tend to be more complex than the turbulence and 
length scale transport equations of two equation turbulence models. These intermittency 
models include a significant degree of empiricism. These models either require input of 
transition onset locations or they employ transition onset correlations whose accuracy is 
generally limited to a narrow range of flow problems. 
 
Steelant and Dick (2001) derived a transport equation model for intermittency that 
includes the effects of both intermittency and freestream turbulence. This model is 
relatively simple. The transition onset locations are fixed by setting the intermittency 
variable to zero along all laminar surfaces, which could be determined by any means 
desired. Their paper presents test cases for a range of pressure gradients and freestream 
turbulence levels for both flat plates and turbine blades and appears to give good 
agreement with test data. 
 
Vicedo, Vilmin, Dawes and Savill (1984) developed a transport equation intermittency 
model for use in separated flow transition. This model includes four source terms for the 
intermittency equation. This model was tested over a very narrow range of problems – a 
flat plate with separation downstream of a cylindrical leading edge. While results for this 
case were promising, more extensive testing of this model is needed. 
 
Langtry, and Menter (2005) developed a transition model that includes transport 
equations for the intermittency and for the transition momentum thickness Reynolds 
number. This model was developed primarily  for external aerodynamic applications. 
Again, four source terms are required for the intermittency equation; this is not a simple 
model. The model has been applied to a range of aerospace and industrial applications 
including multi-element airfoils and wings with laminar separation bubbles. The model 
appears to give reasonable results for these complex flows. 
 
 
Recommendations for RATTraP Modeling 
The algebraic/integral models are best suited to the RATTraP method. These models can 
use surface differential equations for integration of the intermittency functions. The 
experimental studies of turbulent spots show that the intermittency does not vary 
significantly normal to the wall (with the exception of turbulent boundary layer edge 
intermittency which is already accounted for by turbulence models). Thus, there does not 
appear to be a compelling reason to model an intermittency function which varies across 
the boundary layer. Determining a single value of the intermittency for use on the entire 
profile at a given surface location should be sufficient. 
 
Another advantage of the algebraic/integral intermittency modeling is that these models 
are tied very closely to empirical correlations of spot formation and propagation as 
functions of pressure gradient and freestream turbulence level. Differential models, while 
potentially robust computationally, probably will not follow the empirically derived 
relationships as well as the algebraic/integral methods. 
 



FZM-9113 
June 15, 2005 

 

 70

The Solomon (1996) transition model appears to be the most complete model for the 
transition region available. It has been tested by Sanz and Platzer (1996) on separation 
bubbles and provided good agreement with test data. Some enhancements of the model 
may be required to prevent unrealistic lateral variations in the intermittency factor, to 
account for turbulent contamination, and to allow the model to integrate well with a 
Navier-Stokes solver. Nevertheless, the basic model formulation and calibrations should 
provide good predictions for RATTraP. 
 
One area that will require some attention in integrating the Solomon model with 
RATTraP is the implicit intermittency in transport equation turbulence models. All 
testing to date has indicated that he implicit intermittency in the LM Aero k-kl two 
transport equation turbulence model is much less than required for accurate modeling of 
the transitional flow region. However, the implicit intermittency in two equation 
turbulence models may require some adjustment to the calibration of the Solomon model 
in order to match experimental data. It should be possible to perform this calibration over 
a small range pressure gradients on flat plates. It may be necessary to perform this 
calibration for each turbulence model that is going to be used with the intermittency 
model to ensure optimal accuracy. The degree of dependence of the transitional model 
predictions to specific turbulence model will have to be established. 
 
One aspect of intermittency modeling that could be improved is the application of the 
intermittency function to the turbulence model. In every reference examined, the 
turbulent viscosity calculated in the turbulence model is multiplied directly by the 
intermittency to obtain the turbulent viscosity to be applied to the Navier-Stokes 
equations. Narasimha showed that the transitional velocity profile is a linear combination 
of fully laminar and fully turbulent profiles. If the turbulent viscosity is multiplied 
directly by the intermittency factor, and the near wall damping that determines the 
viscous sublayer thickness is determined from the intermittency region’s mean skin 
friction instead of the skin friction of the fully turbulent spot, the viscous sublayer 
thickness in the transitional flow region will be in error. It should be relatively easy to 
modify the near wall damping to use the correct viscous sublayer thickness in the 
intermittency region. 
 
Intermittency modeling for transition due to crossflow instabilities is not a mature 
research subject. In some cases, crossflow can generate mean flowfield disturbances that 
trigger T-S type breakdowns, and the turbulent spot based transitional region flow model 
may be valid. At the current time, the best that we can do is to apply the 
algebraic/integral model to crossflow transition and evaluate and calibrate it as required. 
Continued monitoring of research in this area is warranted. 
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10   Surface Roughness 
 
The following are rules of thumb used to evaluate roughness and steps and gaps.  Much 
of this information was captured in the DARPA QSP LFC Design Document prepared by 
Lockheed Palmdale and William Saric & Helen Reed. 
 

10.1  Isolated and Distributed Roughness  
Surface roughness can directly trip the boundary layer or unfavorably destabilize the 
stationary C-F wave. If the roughness Reynolds number exceeds 150, a turbulent wedge 
is generated directly behind the roughness. Even smaller roughness can cause 
destabilization (Radeztsky et al. 1999). Appropriate limits on roughness are discussed 
below. 
 
10.1.1   Tollmien-Schlichting (T-S)  
Even though one wants to maintain a favorable Cp as far as possible to eliminate T-S, 
there can always be problems with steps and gaps: 
• 2-D roughness is bad. There may not be an acceptable step height. 
• 3-D roughness can be bad if the spanwise wavelength is within the unstable range. 

For supersonic flow, 3-D T-S is more unstable than 2-D T-S. 
• Whole chord sensitive 
• Keep Rek < 150 over whole chord to avoid immediately tripping to turbulent. Here 

Rek is the roughness Reynolds number based on the roughness height, and the local 
speed and viscosity at the top of the roughness. 

• Steps are bad. Gaps are very bad if not along an isobar. 
• Backward-facing steps are worse than forward-facing steps (everything must be done 

as a forward-facing step). 
• Background roughness typical of good aircraft finish (3-4 µm rms) is OK. 
• Concave curvature is bad 
• Convex curvature is good 
• Check that engine-noise frequencies are outside of T-S passband. 
  
10.1.2   Stationary Crossflow  
• First 10% chord is most sensitive for roughness (boundary layer thin). After 10% 

chord, roughness does not affect C-F, provided Rek < 150 
• 3-D roughness (isolated and/or distributed) is bad. Isolated roughness at any level can 

cause problems. Random distributed roughness should be typical of a good aircraft 
finish (3-4 µm rms) 

• 2-D roughness is OK except at the edges 
• Rek < 150 over whole chord 
• Suggested control roughness Rek < 7 
• Waviness or disturbance spacing (steps, gaps) longer than all unstable wavelengths is 

OK (to avoid harmonics) 
• Waviness or disturbance spacing shorter than ½ most unstable wavelength is OK 
• Holes as effective as bumps in generating C-F. This is both good (control) and bad 

(most unstable). 
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• Backward-facing steps worse than forward-facing steps (everything must be done as a 
forward-facing step) 

• Crouch & Ng (2000) and Crouch (2004) propose a variable N factor expression 
( )*ln3.2 δrmsCF hN −=  where rmsh  is the 3-D rms roughness height and *δ  is the 

boundary layer thickness at the neutral point for the critical mode. 
 
Numerical criteria for 2-D isolated roughness elements are presented.  These criteria use 
a relevant Reynolds number to scale the roughness element geometry. 
 

10.2 Steps 
o For forward facing steps, the Reynolds number based on step height should be at or 

below 1800. 
o For rearward facing steps, the allowable height is half that permitted for forward 

facing steps. 
 
Wang & Gaster (2004) and Crouch et al. (2004) curve fits available data for zero, 
favorable, and adverse pressure gradients, and propose the following N factor 
corrections: 
 
Forward facing steps: *

0 6.1 δhNN TSTS −=  
Backward facing steps: *

0 4.4 δhNN TSTS −=  
 
where 0TSN  is the smooth-surface N factor for transition, h  is the step height, and *δ  is 
the displacement thickness at the step location. 
 

10.3 Gaps 
o For gaps which run normal to the flow direction over which the flow can easily cross 

the Reynolds numbers based on gap width should be at or below 15,000. 
o Gaps with flow running along the gap are especially problematic.  The allowable gap 

width for such geometries is 1/7 (14%) of that for gaps with flow across. 
 
 

10.4 Surface Waves 
Allowable amplitude of a single 2D wave, parallel to span 
 
 
 
 
where a is the surface wave amplitude, λ is the wavelength of the surface waves, C is the 
chord of the wing, Λ is the wing sweep angle, and Rc is the chord Reynolds Number 
 
The maximum allowable amplitude of an isolated two-dimensional surface wave that is 
roughly orientated to the wing span (i.e. running across the flow) is given by the formula. 
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For chordwise waves wherein the flow runs up and down the surface, the allowable 
surface wave amplitude is twice that given above. 
 
For multiple waves, the allowable roughness is 1/3 that for a single wave.  This ratio can 
be applied to either spanwise or stream wise waves. 
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11   Recommendations 
 
The current report has described in detail the state of the art in transition prediction 
methods for swept wings in the subsonic/transonic flow regime.  For this type of flow 
there are four major transition mechanisms (T-S, crossflow, laminar-turbulent interaction, 
and attachment line) (Figure 21) and other factors (compressibility, intermittency, surface 
roughness) affecting transition.  For each of these mechanisms, succinct 
recommendations were given in the relevant discussion.  The purpose of this section is to 
expand on these recommendations with some broad algorithmic outlines and ideas as to 
how these methods would be integrated into a general 3D Navier-Stokes solver. 
 

 
 

Figure 21:  Transition mechanisms for swept wings 
 
Tollmien-Schlichting (T-S) transition will be predicted using both envelope and wave 
tracking eN methods.  Correlations of the amplification factor N with boundary layer 
integral parameters H and Reθ are developed for each important T-S frequency using LST 
or experimental data and are available a priori.  For the envelope method a linear fit of 
the N factor curves for each shape factor is computed.  At each iteration of the Navier-
Stokes solver, the computed boundary layer profile is used to calculate the necessary 
boundary layer integral parameters (in this case H and Reθ).  These are used to calculate 
the right-hand side(s) for the N factor equation.  Then the transport equation for the N 
factor is solved.  If the envelope method is used, only one equation is solved (plus one 
more for the streamwise distance).  For the wave tracking method, a transport equation is 
solved for each frequency/wave number.  Then the computed N factor is compared to 
Ncrit to determine transition.  For the wave tracking method, the maximum value of N for 
each frequency is used and compared to Ncrit.  This process is summarized in Figure XX 
below. 
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Figure 22:  Outline of transition prediction methodology 

 
Transition due to crossflow instabilities is computed in much the same way as for T-S 
instabilities.  The amplification factor is correlated to boundary layer integral parameters, 
in this case also including Wmax (maximum crossflow velocity) and Ymax (location of 
maximum crossflow velocity).  As in the case of T-S, the correlations in the form of 
tables are calculated using LST or experiment and are available beforehand.  The 
boundary layer integral parameters are computed from the boundary layer data at each 
Navier-Stokes iteration and using the correlations an N factor is computed either for the 
envelope or for individual crossflow modes using a 2D surface transport equation.  This 
is then compared to Ncrit (in general different for crossflow) to determine transition. 
 
Interactions between T-S and crossflow instabilities which can affect transition will be 
accounted for using influence parameters to modify the amplification factor.  For 
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example, the T-S N factor can be modified according to NTS=α-βNCF, where α and β are 
determined from available data. 
 
The strategy for the prediction of transition of the attachment line boundary layer must 
start with a determination of whether or not the boundary layer at the root of the wing is 
laminar or turbulent, because this determines the value of the critical Reθ for transition.  
If the surface that wing abuts is a surface on which transition is being calculated, this can 
(and should) be done automatically by determining the value of the transition function at 
the intersection point, or as close to it as possible.  If transition is not being computed on 
the intersecting surface, then it must be input or assumed to be turbulent.  Geometries 
which do not have an intersecting surface (flying wings, for example) are of course 
laminar roots. 
 
The calculation of Reθ can be done in two ways.  The formula in equations (3) or (4) 
could be used directly although this does not really apply to finite wings.  The advantage 
here is that this is very simple and doesn’t need any boundary layer information at all.  It 
also applies to the entire wing.  The other alternative is to actually compute the 
momentum thickness and from this Req.  Since this approach is more general and the 
information needed to calculate it is readily available, this is the approach that will be 
used. 
 
The location of the attachment line must be known in order to extract the necessary 
boundary layer parameters there.  This location can be located automatically as part of 
the transition solution process by noting when certain velocity components are zero, or 
(as is currently done) when the upwinding term goes to zero.  An alternative would be to 
locate the attachment line manually but this will not be used as it is not general enough.  
There are issues with automatic location of the attachment line, as it may also pick up 
lines in the flow that have similar characteristics  (flow over riblets, for example).  A 
scheme will have to be devised to determine which of the detected features is an 
attachment line, such as proximity to the leading edge. 
 
Once the attachment line is located, the momentum thickness and the velocity at the edge 
of the boundary layer must be calculated.  This information is calculated along with all of 
the other boundary layer parameters, so it will be available.  Reθ is then calculated at each 
point on the attachment line and compared to the critical value to determine transition. 
 
If transition has been determined on a part of the attachment line, this needs to be 
projected back along the inviscid streamline over both the top and bottom surfaces.  It 
may be possible to feed this information into the T-S solution process, or it could be done 
in a separate routine following the streamlines and setting the transition at each cell along 
the path. 
 
The strategy for determining transition in a laminar boundary layer due to contamination 
from an existing turbulent boundary layer is straightforward.  First, the surface that has a 
turbulent boundary layer must be identified, either through definition in an input file or 
computed as part of its own transition calculation.  The forward point of intersection of 
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the laminar and turbulent boundary layer (for instance at the wing root) then must either 
be identified or calculated.  The contamination of the laminar boundary layer will then be 
propagated at an angle to the streamlines which will have to be determined from 
experiment or from LST calculations.  This angle will in general be a function of the 
local Mach number, Reynolds number, surface roughness, and surface curvature. 
 
The length of the transition region will be determined using an algebraic/integral method.  
This is easily fit into the existing surface based solution scheme.  The parameters needed 
to evaluate and integrate the intermittency model are readily available from the 3-D 
Navier-Stokes solution and RATTraP boundary layer profile based integral parameter 
formulation.  This intermittency factor will then be used in Navier-Stokes model 
turbulent stress model to account for the transitional flow region. 
 
The effect of surface roughness on transition is extracted from empirical correlations.  
For roughness elements, correlations with roughness height are used.  For steps, the 
height of the step is used.  For gaps, the width of the gap will determine transition.  For 
surface waviness, the amplitude of the wave and the wavelength determine transition.  
Transition from roughness will fall into two classes;  immediate transition and 
modifications to N factor. 
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